Skip to main content
Log in

Core–shell expandable graphite @ layered double hydroxide as a flame retardant for polyvinyl alcohol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Expandable graphite (EG) is a kind of halogen-free flame retardant with high efficiency, but EG produces a lot of smoke when used. In order to reduce the smoke produced by EG flame retardant, layered double hydroxide (LDH)-coated EG was designed and prepared by the hydrothermal method to form composite EG@LDH with core–shell structure and used as flame retardant for polyvinyl alcohol (PVA). When EG@LDH particle content reaches 25%, UL-94 test reaches V-0 rating, limiting oxygen index reaches 33.8%, and the density of smoke is reduced by 75.4% compared with ordinary EG. These results are due to LDH's ability to produce stable oxides during combustion, as well as water vapor that absorbs heat and smoke, protecting the expanded graphite carbon layer from destruction. EG@LDH could suppress the “popcorn effect” of EG, improve the flame-retardant performance, expand the application scope of EG and have a broad application prospect in PVA and resin flame retardant with the characteristics of low cost and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu P, Chen W, Liu Y, Bai S, Wang Q. Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polym Degrad Stab. 2014;109:261–9.

    Article  CAS  Google Scholar 

  2. Sahmetlioglu E, Yuruk H, Toppare L, Cianga I, Yagci Y. Synthesis and characterization of conducting copolymers of poly(vinyl alcohol) with thiophene side-groups and pyrrole. Polym Int. 2004;53(12):2138–44.

    Article  CAS  Google Scholar 

  3. Cabasso I, Jagurgrodzinski J, Vofsi D. Polymeric alloys of polyphosponates and acetyl cellulose. I. Sorption and diffusion of benzene and cyclohexane. J Appl Polym Sci. 1974;18(7):2117–36.

    Article  CAS  Google Scholar 

  4. Ruckenstein E, Sun F. Anomalous sorption and pervaporation of aqueous organic mixtures by poly(vinyl acetal) membranes. J Membr Sci. 1994;95(3):207–19.

    Article  CAS  Google Scholar 

  5. Zhao C-X, Liu Y, Wang D-Y, Wang D-L, Wang Y-Z. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym Degrad Stab. 2008;93(7):1323–31.

    Article  CAS  Google Scholar 

  6. Wang D-L, Liu Y, Wang D-Y, Zhao C-X, Mou Y-R, Wang Y-Z. A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polym Degrad Stab. 2007;92(8):1555–64.

    Article  CAS  Google Scholar 

  7. Yuan B, Bao C, Guo Y, Song L, Liew KM, Hu Y. Preparation and characterization of flame-retardant aluminum hypophosphite/poly(vinyl alcohol) composite. Ind Eng Chem Res. 2012;51(43):14065–75.

    Article  CAS  Google Scholar 

  8. Guo D, Bai S, Wang Q. A novel halogen-free flame retardant poly (vinyl alcohol) foam with intrinsic flame retardant characteristics prepared through continuous extrusion. J Cell Plast. 2014;51(2):145–63.

    Article  Google Scholar 

  9. Yang S, Wang J, Huo S, Wang M, Wang J, Zhang B. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues. Polym Degrad Stab. 2016;128:89–98.

    Article  CAS  Google Scholar 

  10. Zheng Z, Liu Y, Zhang L, Wang H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci. 2016;51(12):5857–71.

    Article  CAS  Google Scholar 

  11. Xu D, Liu X, Feng J, Hao J. Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam. Chem Res Chin Univ. 2015;31(2):315–20.

    Article  Google Scholar 

  12. Chen X, Zhuo J, Song W, Jiao C, Qian Y, Li S. Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites. Polym Adv Technol. 2014;25(12):1530–7.

    Article  CAS  Google Scholar 

  13. Mu X, Yuan B, Hu W, Qiu S, Song L, Hu Y. Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism. RSC Adv. 2015;5(93):76068–78.

    Article  CAS  Google Scholar 

  14. Chao C, Gao M, Chen S. Expanded graphite. J Therm Anal Calorim. 2017;131(1):71–9.

    Article  Google Scholar 

  15. Zhang X-G, Ge L-L, Zhang W-Q, Tang J-H, Ye L, Li Z-M. Expandable graphite-methyl methacrylate-acrylic acid copolymer composite particles as a flame retardant of rigid polyurethane foam. J Appl Polym Sci. 2011;122(2):932–41.

    Article  CAS  Google Scholar 

  16. Wang Y, Wang F, Dong Q, Xie M, Liu P, Ding Y, et al. Core-shell expandable graphite @ aluminum hydroxide as a flame-retardant for rigid polyurethane foams. Polym Degrad Stab. 2017;146:267–76.

    Article  CAS  Google Scholar 

  17. Wang H, Cao J, Cao C, Guo Y, Luo F, Qian Q, et al. Influence of phosphorus-grafted expandable graphite on the flame-retardant property of UHMWPE composite. Polym Adv Technol. 2018;30:1–11.

    Google Scholar 

  18. Kuan CF, Yen WH, Chen CH, Yuen SM, Kuan HC, Chiang CL. Synthesis, characterization, flame retardance and thermal properties of halogen-free expandable graphite/PMMA composites prepared from sol–gel method. Polym Degrad Stab. 2008;93(7):1357–63.

    Article  CAS  Google Scholar 

  19. Chiang C-L, Hsu S-W. Novel epoxy/expandable graphite halogen-free flame retardant composites−preparation, characterization, and properties. J Polym Res. 2009;17(3):315–23.

    Article  Google Scholar 

  20. Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev. 2012;112(7):4124–55.

    Article  CAS  Google Scholar 

  21. Meng D, Ma Z, Leng Q, Zhang Z, Ning H, Peng X, et al. A flame-retardant DOPO-MgAl-LDH was prepared and applied in poly (methyl methacrylate) resin. Polym Adv Technol. 2019;31(1):73–85.

    Article  CAS  Google Scholar 

  22. Du L, Zhang Y, Yuan X, Chen J. Combustion characteristics and synergistic effect of halogen-free flame-retarded EVA/hydrotalcite blends with expandable graphite and fumed silica. Polym Plast Technol Eng. 2009;48(10):1002–7.

    Article  CAS  Google Scholar 

  23. Zhang M, Gao B, Yao Y, Inyang M. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere. 2013;92(8):1042–7.

    Article  CAS  Google Scholar 

  24. Tiefeng P, Bin L, Xuechao G, et al. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Appl Surf Sci. 2018;444:800–10.

    Article  Google Scholar 

  25. Mosurkal R, Samuelson LA, Smith KD, Westmoreland PR, Watterson AC. Nanocomposites of TiO2 and siloxane copolymers as environmentally safe flame-retardant materials. J Macromol Sci Part A Chem. 2008;45(11):942–6.

    Article  Google Scholar 

  26. Yan S, Chen Y, Bai Y. Catalytically synergistic effects of novel LaMnO3 composite metal oxide in intumescent flame-retardant polypropylene system. Polym Compos. 2014;35(12):2390–3440.

    Article  Google Scholar 

  27. Leng Q, Li J, Wang Y. Structural analysis of α-zirconium phosphate/cerium phosphate/graphene oxide nanocomposites with flame-retardant properties in polyvinyl alcohol. New J Chem. 2020;44:4568–77.

    Article  CAS  Google Scholar 

  28. Zaghouane-Boudiaf H, Boutahala M, Arab L. Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chem Eng J. 2012;187:142–9.

    Article  CAS  Google Scholar 

  29. Hu XP, Li YL, Wang YZ. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol Mater Eng. 2004;289(2):208–12.

    Article  CAS  Google Scholar 

  30. Kurose A, Miyagawa K, Otsuki M, Masuda E, Shirai H, Shimizu F, et al. Flame retardation of Fe(III)-poly(vinyl Alcohol) films. Text Res J. 1985;55(4):258–9.

    Article  CAS  Google Scholar 

  31. Wang YC, Zhao JP, Xiaojing M. Effect of expandable graphite on polyester resin-based intumescent flame retardant coating. Prog Org Coat. 2019;132:178–83.

    Article  CAS  Google Scholar 

  32. Wang YC, Zhao JP. Effect of graphite on the flame resistance of silica fume-based geopolymeric coatings. Mater Chem Phys. 2020;239:122088.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, H., Ma, Z., Zhang, Z. et al. Core–shell expandable graphite @ layered double hydroxide as a flame retardant for polyvinyl alcohol. J Therm Anal Calorim 147, 6249–6258 (2022). https://doi.org/10.1007/s10973-021-10843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10843-x

Keywords

Navigation