Kumar A, Shukla SK. A review on thermal energy storage unit for solar thermal power plant application. Energy Proc. 2015;74:462–9. https://doi.org/10.1016/j.egypro.2015.07.728.
Article
Google Scholar
Jouhara H, Żabnieńska-Góra A, Khordehgah N, Ahmad D, Lipinski T. Latent thermal energy storage technologies and applications: a review. Int J Thermofluids. 2020;5:100039. https://doi.org/10.1016/j.ijft.2020.100039.
Article
Google Scholar
Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.
CAS
Article
Google Scholar
Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71. https://doi.org/10.1007/s10973-013-3472-x.
CAS
Article
Google Scholar
Agyenim F. The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy. 2016;87:229–39. https://doi.org/10.1016/j.renene.2015.10.012.
CAS
Article
Google Scholar
Ziapour BM, Hashtroudi A. Performance study of an enhanced solar greenhouse combined with the phase change material using genetic algorithm optimization method. Appl Therm Eng. 2017;110:253–64. https://doi.org/10.1016/j.applthermaleng.2016.08.153.
CAS
Article
Google Scholar
Shalaby SM, Bek MA, El-Sebaii AA. Solar dryers with PCM as energy storage medium: a review. Renew Sustain Energy Rev. 2014;33:110–6. https://doi.org/10.1016/j.rser.2014.01.073.
CAS
Article
Google Scholar
Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Transf. 2016;102:1159–68. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.010.
CAS
Article
Google Scholar
Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88. https://doi.org/10.1007/s10973-012-2291-9.
CAS
Article
Google Scholar
Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45. https://doi.org/10.1016/j.rser.2007.10.005.
CAS
Article
Google Scholar
Feldman D, Shapiro MM, Banu D. Organic phase change materials for thermal energy storage. Solar Energy Mater. 1986;13(1):1–10. https://doi.org/10.1016/0165-1633(86)90023-7.
CAS
Article
Google Scholar
Alkan C. Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochim Acta. 2006;451(1–2):126–30. https://doi.org/10.1016/j.tca.2006.09.010.
CAS
Article
Google Scholar
Karaipekli A, Sarı A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew Energy. 2007;32(13):2201–10. https://doi.org/10.1016/J.RENENE.2006.11.011.
CAS
Article
Google Scholar
Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conv Manage. 2006;47(3):303–10. https://doi.org/10.1016/j.enconman.2005.03.004.
CAS
Article
Google Scholar
Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev. 2012;16(4):2118–32. https://doi.org/10.1016/j.rser.2012.01.020.
CAS
Article
Google Scholar
Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon. 2013;51:365–72. https://doi.org/10.1016/j.carbon.2012.08.068.
CAS
Article
Google Scholar
Rozanna D, Chuah TG, Salmiah A, Choong TS, Sa’ari M. Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy. 2005;1(4):495–513. https://doi.org/10.1081/GE-200038722.
CAS
Article
Google Scholar
Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98. https://doi.org/10.1016/j.rser.2013.08.107.
CAS
Article
Google Scholar
Nikolić R, Marinović-Cincović M, Gadžurić S, Zsigrai IJ. New materials for solar thermal storage—solid/liquid transitions in fatty acid esters. Sol Energy Mater Sol Cells. 2003;79(3):285–92. https://doi.org/10.1016/S0927-0248(02)00412-9.
CAS
Article
Google Scholar
Feldman D, Banu D, Hawes D. Low chain esters of stearic acid as phase change materials for thermal energy storage in buildings. Sol Energy Mater Sol Cells. 1995;36(3):311–22.
CAS
Article
Google Scholar
Aydın AA. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol Energy Mater Sol Cells. 2013;113:44–51. https://doi.org/10.1016/j.solmat.2013.01.024.
CAS
Article
Google Scholar
Feldman D, Banu D, Hawes DW. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Sol Energy Mater Sol Cells. 1995;36(2):147–57.
CAS
Article
Google Scholar
Cabeza LF, Castell A, Barreneche CD, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.
CAS
Article
Google Scholar
Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Stable, low-cost phase change material for building applications: the eutectic mixture of decanoic acid and tetradecanoic acid. Appl Energy. 2016;168:457–64.
CAS
Article
Google Scholar
Indartono YS, Suwono A, Pasek AD, Mujahidin D, Rizal I. Thermal characteristics evaluation of vegetables oil to be used as phase change material in air conditioning system. Jurnal Teknik Mesin. 2010;12(2):119–24. https://doi.org/10.9744/jtm.12.2.119-124.
Article
Google Scholar
Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci. 2015;16(6):12871–90.
CAS
Article
Google Scholar
Otamiri FO, Ogugua VN, Joshua PE, Odiba AS, Ukegbu CY. Physicochemical Characterization of Coconut Copra (Dry Flesh) oil and Production of Biodiesel from Coconut Copra Oil. Jökull J Univ Niger Nsukka. 2014;64:201–36.
Google Scholar
Gervajio GC, Withana‐Gamage TS, Sivakumar M. Fatty acids and derivatives from coconut oil. Bailey's industrial oil and fat products. 2005: pp 1–45.
Noël JA, Allred PM, White MA. Life cycle assessment of two biologically produced phase change materials and their related products. Int J Life Cycle Assess. 2015;20(3):367–76.
Article
Google Scholar
Prapun R, Cheetangdee N, Udomrati S. Characterization of virgin coconut oil (VCO) recovered by different techniques and fruit maturities. Int Food Res J. 2016; 23(5).
Srivastava Y, Semwal AD, Sajeevkumar VA, Sharma GK. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). J Food Sci Technol. 2017;54(1):45–54.
CAS
Article
Google Scholar
Jayadas NH, Nair KP. Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int. 2006;39(9):873–8.
CAS
Article
Google Scholar
Besbes S, Blecker C, Deroanne C, Lognay G, Drira NE, Attia H. Quality characteristics and oxidative stability of date seed oil during storage. Food Sci Technol Int. 2004;10(5):333–8. https://doi.org/10.1177/1082013204047777.
CAS
Article
Google Scholar
Saleel CA, Mujeebu MA, Algarni S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J Therm Anal Calorim. 2019;136(2):629–36. https://doi.org/10.1007/s10973-018-7676-y.
CAS
Article
Google Scholar
Mettawee ES, Ead A. Energy saving in building with latent heat storage. Int J Thermal Environ Eng. 2013;5(1):21–30. https://doi.org/10.5383/ijtee.05.01.003.
Article
Google Scholar
Wonorahardjo S, Sutjahja IM, Kurnia D, Fahmi Z, Putri WA. Potential of thermal energy storage using coconut oil for air temperature control. Buildings. 2018;8(8):95. https://doi.org/10.3390/buildings8080095.
Article
Google Scholar
Lee H, Jeong SG, Chang SJ, Kang Y, Wi S, Kim S. Thermal performance evaluation of fatty acid ester and paraffin based mixed SSPCMs using exfoliated graphite nanoplatelets (xGnP). Appl Sci. 2016;6(4):106. https://doi.org/10.3390/app6040106.
CAS
Article
Google Scholar
Wi S, Seo J, Jeong SG, Chang SJ, Kang Y, Kim S. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Sol Energy Mater Sol Cells. 2015;143:168–73. https://doi.org/10.1016/j.solmat.2015.06.040.
CAS
Article
Google Scholar
Afzal A, Saleel CA, Badruddin IA, Khan TY, Kamangar S, Mallick Z, Samuel OD, Soudagar ME. Human thermal comfort in passenger vehicles using an organic phase change material–an experimental investigation, neural network modelling, and optimization. Build Environ. 2020;180:107012. https://doi.org/10.1016/j.buildenv.2020.107012.
Article
Google Scholar
De Gracia A, Cabeza LF. Phase change materials and thermal energy storage for buildings. Energy Build. 2015;103:414–9. https://doi.org/10.1016/j.enbuild.2015.06.007.
Article
Google Scholar
Irsyad M, Indartono YS, Suwono A, Pasek AD. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system. InIOP Conference Series: Materials Science and Engineering 2015; 88 (1): 012051. IOP Publishing. https://doi.org/10.1088/1755-1315/60/1/012027
Boemeke L, Marcadenti A, Busnello FM, Gottschall CB. Effects of coconut oil on human health. Open J Endocrine Metabolic Diseas. 2015;5(07):84.
CAS
Article
Google Scholar
Li TX, Wu DL, He F, Wang RZ. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transf. 2017;115:148–57.
CAS
Article
Google Scholar
Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87(2):371–5.
Article
Google Scholar
Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91(2):443–6.
CAS
Article
Google Scholar
Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55.
CAS
Article
Google Scholar
Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf. 2017;112:649–61.
CAS
Article
Google Scholar
Bhagat K, Saha SK. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew Energy. 2016;95:323–36.
Article
Google Scholar
Ram MK, Myers PD Jr, Jotshi C, Goswami DY, Stefanakos EK, Arvanitis KD, Papanicolaou E, Belessiotis V. Microencapsulated dimethyl terephthalate phase change material for heat transfer fluid performance enhancement. Int J Energy Res. 2017;41(2):252–62. https://doi.org/10.1002/er.3615.
CAS
Article
Google Scholar
Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol Cells. 2017;167:109–20. https://doi.org/10.1016/j.solmat.2017.03.038.
CAS
Article
Google Scholar
Tansakul A, Chaisawang P. Thermophysical properties of coconut milk. J Food Eng. 2006;73(3):276–80.
Article
Google Scholar
Jayadas NH, Prabhakaran Nair K, Ajithkumar G. Vegetable oils as base oil for industrial lubricants: evaluation oxidative and low temperature properties using TGA. DTA DSC InWorld Tribol Cong. 2005;42010:539–40.
Article
Google Scholar
Stokoe WN. The rancidity of coconut oil produced by mould action. Biochemical Journal. 1928;22(1):80. https://doi.org/10.1042/bj0220080.
CAS
Article
PubMed Central
Google Scholar
Okpokwasili GC, Molokwu CN. Yeast and mould contaminants of vegetable oils. Biores Technol. 1996;57(3):245–9.
CAS
Article
Google Scholar
Lu H. A comparative study of storage stability in virgin coconut oil and extra virgin olive oil upon thermal treatment, 2009.
Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Appl Therm Eng. 2018;141:724–40. https://doi.org/10.1016/j.applthermaleng.2018.05.091.
CAS
Article
Google Scholar
Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification. Energy Convers Manage. 2018;166:241–59. https://doi.org/10.1016/j.enconman.2018.04.016.
CAS
Article
Google Scholar
Udangawa WR, Willard CF, Mancinelli C, Chapman C, Linhardt RJ, Simmons TJ. Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials. Cellulose. 2019;26(3):1855–68. https://doi.org/10.1007/s10570-018-2151-2.
CAS
Article
Google Scholar
Al-Jethelah MS, Tasnim SH, Mahmud S, Dutta A. Melting of nano-phase change material inside a porous enclosure. Int J Heat Mass Transf. 2016;102:773–87.
CAS
Article
Google Scholar
Ho CJ, Gao JY. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Transf. 2013;62:2–8.
CAS
Article
Google Scholar
Al-Jethelah M, Tasnim SH, Mahmud S, Dutta A. Nano-PCM filled energy storage system for solar-thermal applications. Renew Energy. 2018;126:137–55. https://doi.org/10.1016/j.renene.2018.02.119.
CAS
Article
Google Scholar
Al-Jethelah M, Ebadi S, Venkateshwar K, Tasnim SH, Mahmud S, Dutta A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation. Appl Therm Eng. 2019;148:1029–42. https://doi.org/10.1016/j.applthermaleng.2018.11.121.
CAS
Article
Google Scholar
Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Thermal Fluid Sci. 2013;50:201–12. https://doi.org/10.1016/j.expthermflusci.2013.06.010.
CAS
Article
Google Scholar
Kasibhatla RR, König-Haagen A, Rösler F, Brüggemann D. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity. Heat Mass Transf. 2017;53(5):1735–44.
CAS
Article
Google Scholar
Patankar S. Numerical heat transfer and fluid flow. Taylor & Francis; 2018.
Fortunato B, Camporeale SM, Torresi M, Albano M. Simple mathematical model of a thermal storage with PCM. AASRI Procedia. 2012;2:241–8. https://doi.org/10.1016/j.aasri.2012.09.041.
Article
Google Scholar
Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq. 2020;306:112892. https://doi.org/10.1016/j.molliq.2020.112892.
CAS
Article
Google Scholar
Dhaidan NS. Nanostructures assisted melting of phase change materials in various cavities. Appl Therm Eng. 2017;111:193–212. https://doi.org/10.1016/j.applthermaleng.2016.09.093.
CAS
Article
Google Scholar
Wu YK, Lacroix M. Melting of a PCM inside a vertical cylindrical capsule. Int J Numer Meth Fluids. 1995;20(6):559–72. https://doi.org/10.1002/fld.1650200610.
CAS
Article
Google Scholar
Al-Jethelah MS, Al-Sammarraie A, Tasnim SH, Mahmud S, Dutta A. Effect of convection heat transfer on thermal energy storage unit. Open Phys. 2018;16(1):861–7. https://doi.org/10.1515/phys-2018-0108.
CAS
Article
Google Scholar
Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Transfer. 1986;108(1):174–81. https://doi.org/10.1115/1.3246884.
CAS
Article
Google Scholar
Alomair M, Alomair Y, Abdullah HA, Mahmud S, Tasnim S. Experimental investigation of cylindrical thermal energy storage system using Bio-based phase change materials. In Proceedings of International Conference of Energy Harvesting, Storage, and Transfer 2017. https://doi.org/10.11159/ehst17.112
Alomair M, Alomair Y, Tasnim S, Mahmud S, Abdullah H. Analyses of bio-based nano-PCM filled concentric cylindrical energy storage system in vertical orientation. J Energy Storage. 2018;20:380–94. https://doi.org/10.1016/j.est.2018.10.004.
Article
Google Scholar
Selimefendigil F, Öztop HF. Modeling and identification of combined effects of pulsating inlet temperature and use of hybrid nanofluid on the forced convection in phase change material filled cylinder. J Taiwan Inst Chem Eng. 2021;119:90–107. https://doi.org/10.1016/j.jtice.2021.01.032.
CAS
Article
Google Scholar
Jourabian M, Farhadi M. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study. J Mech Sci Technol. 2015;29(9):3819–30. https://doi.org/10.1007/s12206-015-0828-0.
Article
Google Scholar
Das N, Takata Y, Kohno M, Harish S. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit. Int J Heat Mass Transf. 2017;113:423–31.
CAS
Article
Google Scholar
Ghalambaz M, Zhang J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. Int J Heat Mass Transf. 2020;146:118832. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118832.
Article
Google Scholar
Mehryan SA, Vaezi M, Sheremet M, Ghalambaz M. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf. 2020;151:119385. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119385.
CAS
Article
Google Scholar
Ebadi S. Performance Enhancement of Thermal Energy Storage System using Composite Bio-based PCM (Doctoral dissertation). Thesis: University of Guelph; 2018.
Google Scholar
Putra N, Prawiro E, Amin M. Thermal properties of beeswax/CuO nano phase-change material used for thermal energy storage. Int J Technol. 2016;7(2):244–53. https://doi.org/10.14716/ijtech.v7i2.2976.
Article
Google Scholar
Thaib R, Amin M, Umar H. Thermal properties of beef tallow/coconut oil bio PCM using t-history method for wall building applications. Eur J Eng Technol Res. 2019;4(11):38–40. https://doi.org/10.24018/ejers.2019.4.11.1627.
Article
Google Scholar
Venkateshwar K, Joshy N, Simha H, Mahmud S. Quantifying the nanoparticles concentration in nano-PCM. J Nanopart Res. 2019;21(12):1–10. https://doi.org/10.1007/s11051-019-4716-x.
CAS
Article
Google Scholar
Jeong SG, Chung O, Yu S, Kim S, Kim S. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2013;117:87–92. https://doi.org/10.1016/j.solmat.2013.05.038.
CAS
Article
Google Scholar
Silalahi AO, Sukmawati N, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of organic PCM coconut oil from T-history method and its potential as thermal energy storage in Indonesia. In IOP Conference Series: Materials Science and Engineering 2017; 214 (1): 012034. IOP Publishing. https://doi.org/10.1088/1757-899X/214/1/012034
Tipvarakarnkoon T, Blochwitz R, Senge B. Rheological properties and phase change behaviors of coconut fats and oils. Ann Trans Nordic Rheol Soc. 2008;16:159–66.
Google Scholar
Selimefendigil F, Öztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2020;200:61–75. https://doi.org/10.1016/j.solener.2019.05.062.
Article
Google Scholar
Zwanzig SD, Lian Y, Brehob EG. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope. Energy Convers Manage. 2013;69:27–40.
Article
Google Scholar
Gasia J, Martin M, Solé A, Barreneche C, Cabeza LF. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200°C. Appl Sci. 2017;7(7):722. https://doi.org/10.3390/app7070722.
CAS
Article
Google Scholar
Krabbenhoft K, Damkilde L, Nazem M. An implicit mixed enthalpy–temperature method for phase-change problems. Heat Mass Transf. 2007;43(3):233–41. https://doi.org/10.1007/s00231-006-0090-1.
Article
Google Scholar
Voller VR, Peng S. An enthalpy formulation based on an arbitrarily deforming mesh for solution of the Stefan problem. Comput Mech. 1994;14(5):492–502. https://doi.org/10.1007/BF00377601.
Article
Google Scholar
Sutjahja IM, Putri WA, Fahmi Z, Wonorahardjo S, Kurnia D. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning. In Journal of Physics: Conference Series 2017; 877 (1): 012038. IOP Publishing. https://doi.org/10.1088/1742-6596/877/1/012038
Putri WA, Fahmi Z, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia. InJournal of Physics: Conference Series 2016; 39 (1): 012065. IOP Publishing.
Shafee A, Sheikholeslami M, Wang P, Selimefendigil F, Babazadeh H. Phase change process of nanoparticle enhanced PCM in a heat storage including unsteady conduction. J Mol Liq. 2020;309:113102. https://doi.org/10.1016/j.molliq.2020.113102.
CAS
Article
Google Scholar
Rezaiguia I, Kadja M, Belghar N. Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid. Heat Mass Transf. 2013;49(9):1319–31.
CAS
Article
Google Scholar
J. S. Lauck, “Evaluation of Phase Change Materials for Cooling in a Super-Insulated Passive House 59,” Portland State University, 2013.
AU SR, Putri WA, Sutjahja IM, Kurnia D, Wonorahardjo S. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl26H2o as latent heat energy storage system in Indonesia. J Phys Conference Ser 2016; https://doi.org/10.1088/1742-6596/739/1/012119
Wonorahardjo S, Sutjahja IM, Kurnia D. Potential of coconut oil for temperature regulation in tropical houses. J Eng Phys Thermophys. 2019;92(1):80–8. https://doi.org/10.1007/s10891-019-01909-7.
Article
Google Scholar
Selimefendigil F, Öztop HF. Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field. J Therm Anal Calorim. 2020;140(3):1427–42. https://doi.org/10.1007/s10973-019-08667-x.
CAS
Article
Google Scholar
Selimefendigil F, Öztop HF. Impacts of magnetic field and hybrid nanoparticles in the heat transfer fluid on the thermal performance of phase change material installed energy storage system and predictive modeling with artificial neural networks. J Energy Storage. 2020;32:101793. https://doi.org/10.1016/j.est.2020.101793.
Article
Google Scholar
Kahwaji S, White MA. Edible oils as practical phase change materials for thermal energy storage. Appl Sci. 2019;9(8):1627. https://doi.org/10.3390/app9081627.
CAS
Article
Google Scholar
Mettawee ES, Eid EI, Amin SA. Experimental study on space cooling with pcm thermal storage. J Appl Sci Res. 2012;8(7):3424–32.
CAS
Google Scholar
Indartono YS, Suwono A, Pasek AD, Christantho A. Application of phase change material to save air conditioning energy in building. ASEAN Eng J. 2013;3(2):46–53.
Google Scholar
Rudd AF. Phase-change material wallboard for distributed thermal storage in buildings. Trans Am Soc Heat Refrigerat Air Condition Eng. 1993;99(2):339–46.
Google Scholar
Selimefendigil F, Oztop HF, Chamkha AJ. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Therm Anal Calorim. 2019;135(2):1577–94. https://doi.org/10.1007/s10973-018-7714-9.
CAS
Article
Google Scholar
Saraç EG, Öner E, Kahraman MV. Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose. 2019;26(16):8939–50. https://doi.org/10.1007/s10570-019-02701-9.
CAS
Article
Google Scholar
Singh D. D. Experimental and Numerical Investigation of a Household Refrigerator Integrated with a PCM Based Condenser. Shiv Nadar University, 2014.
Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int J Heat Mass Transf. 2013;67:523–34. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.001.
CAS
Article
Google Scholar
Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf. 2013;67:455–68. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.002.
CAS
Article
Google Scholar
Xiong T, Zheng L, Shah KW. Nano-enhanced phase change materials (NePCMs): a review of numerical simulations. Appl Therm Eng. 2020;178:115492. https://doi.org/10.1016/j.applthermaleng.2020.115492.
CAS
Article
Google Scholar
Bondareva NS, Gibanov NS, Sheremet MA. Computational study of heat transfer inside different PCMs enhanced by Al2O3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials. 2020;10(2):284.
CAS
Article
Google Scholar
Kanimozhi B, Sanandharya K, Anand S, Kumar S. Experimental study on solar cooker using phase change materials. In Applied Mechanics and Materials 2015; 766–767: 463–467. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amm.766-767.463
Zhao Y, Zou B, Li C, Ding Y. Active cooling based battery thermal management using composite phase change materials. Energy Procedia. 2019;158:4933–40. https://doi.org/10.1016/j.egypro.2019.01.697.
CAS
Article
Google Scholar
Osterman E, Tyagi VV, Butala V, Rahim NA, Stritih U. Review of PCM based cooling technologies for buildings. Energy Build. 2012;49:37–49.
Article
Google Scholar
Silva T, Vicente R, Soares N, Ferreira V. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build. 2012;49:235–45.
Article
Google Scholar
Chernousov AA, Chan BY. Novel form-stable phase change material composite for high-efficiency room temperature control. Sol Energy Mater Sol Cells. 2017;170:13–20. https://doi.org/10.1016/j.solmat.2017.05.039.
CAS
Article
Google Scholar
Beemkumar N, Yuvarajan D, Arulprakasajothi M, Elangovan K, Arunkumar T. Control of room temperature fluctuations in the building by incorporating PCM in the roof. J Therm Anal Calorim. 2020;3:1–8.
Google Scholar
Irsyad M. Heat transfer characteristics of coconut oil as phase change material to room cooling application. In IOP Conference Series: Earth and Environmental Science 2017; 60 (1): 012027. IOP Publishing. https://doi.org/10.1088/1755-1315/60/1/012027
Empey CJ. Phase change materials for thermal management of kennedy library study rooms. San Luis Obispo: California Polytechnic State University; 2018.
Google Scholar
Alqahtani T, Mellouli S, Bamasag A, Askri F, Phelan PE. Experimental and numerical assessment of using coconut oil as a phase-change material for unconditioned buildings. Int J Energy Res. 2020;44(7):5177–96. https://doi.org/10.1002/er.5176.
CAS
Article
Google Scholar
Zadeh SM, Mehryan SA, Sheremet M, Ghodrat M, Ghalambaz M. Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material. Int J Mech Sci. 2020;178:105609. https://doi.org/10.1016/j.ijmecsci.2020.105609.
Article
Google Scholar
Gözde SE, Erhan Ö, Vezir KM. Developing a thermo-regulative system for nonwoven textiles using microencapsulated organic coconut oil. J Ind Text. 2020. https://doi.org/10.1177/1528083720921490.
Article
Google Scholar
Mondal S. Phase change materials for smart textiles–An overview. Appl Therm Eng. 2008;28(11–12):1536–50. https://doi.org/10.1016/j.applthermaleng.2007.08.009.
CAS
Article
Google Scholar
Ghalambaz M, Mehryan SA, Hajjar A, Veismoradi A. Unsteady natural convection flow of a suspension comprising Nano-Encapsulated Phase Change Materials (NEPCMs) in a porous medium. Adv Powder Technol. 2020;31(3):954–66. https://doi.org/10.1016/j.apt.2019.12.010.
Article
Google Scholar
Ghalambaz M, Groşan T, Pop I. Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J Mol Liq. 2019;293:111432. https://doi.org/10.1016/j.molliq.2019.111432.
CAS
Article
Google Scholar
Mehryan SA, Ghalambaz M, Gargari LS, Hajjar A, Sheremet M. Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J Energy Storage. 2020;28:101236. https://doi.org/10.1016/j.est.2020.101236.
Article
Google Scholar
Ghalambaz M, Mehryan SA, Mashoofi N, Hajjar A, Chamkha AJ, Sheremet M, Younis O. Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Adv Powder Technol. 2020;31(11):4470–81. https://doi.org/10.1016/j.apt.2020.09.022.
CAS
Article
Google Scholar
Ghalambaz M, Zadeh SM, Mehryan SA, Pop I, Wen D. Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Appl Math Model. 2020;77:1936–53. https://doi.org/10.1016/j.apm.2019.09.015.
Article
Google Scholar
Zadeh SM, Mehryan SA, Ghalambaz M, Ghodrat M, Young J, Chamkha A. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy. 2020;213:118761. https://doi.org/10.1016/j.energy.2020.118761.
CAS
Article
Google Scholar