Skip to main content

A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics

Abstract

As the energy demand is increasing and conventional energy sources are declining, renewable energy sources are becoming increasingly popular. It is very important to store this energy efficiently. The use of phase change materials (PCMs) as latent heat thermal energy storage (LHTES) technology has utmost importance to researchers due to its high storage density and stable thermal characteristics. During charging and discharging of PCM, correspondingly occurring phase change processes (i.e. melting and solidification/ freezing) have been the crux of discussions in most of the subject-related articles in the recent literature. The objectives of those articles are to analyse and understand the phase change properties of PCM in its natural form, with nano-additives, and with or without metal foams. This manuscript provides a detailed review of energy storage, heat transfer, and melting process characteristics of coconut oil, which is an organic phase change material in its nature. Melting features like the progression of solid–liquid interface, time to complete the melting process, rate of melting, and augmentation in the rate of heat transfer owing to a colloidal suspension of nano-material inside PCM are reviewed and presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Abbreviations

A :

Thermal diffusivity ratio

B :

Buoyancy parameter

c p :

Specific heat at constant pressure (J kg1 K1)

C R :

Thermal capacity ratio

Hor h :

Height

h :

Heat transfer coefficient

L :

Enclosure height (m)

Nu 1 :

Nusselt number for pure PCM

Nu 2 :

Nusselt number for nano-PCM

Pr:

Prandtl number

Ra :

Rayleigh number

Re, Re H :

Reynolds number

U :

Amount of energy stored (J)

T :

Temperature (°C or K)

T :

Ambient temperature

T w :

Wall temperature

T 0 :

Initial Temperature

T m :

Melting Temperature (°C or K)

Ts:

Supercooling Temperature

c w :

Heat capacity of water

c t :

Heat capacity of tube

hf or \(\nabla H\) :

Latent heat of fusion (J kg1)

k :

Thermal conductivity (W m1 K1)

m t :

Mass of tube

m p :

Mass of PCM sample

m w :

Mass of water

p :

Pressure

q + :

Heat flux

r :

Radius

u :

Velocity in the x-direction

v :

Velocity in the y-direction

ŭ:

Velocity in the radial direction

ŵ:

Velocity in the axial directions

t :

Time

u :

Free stream velocity

β :

Coefficient of volumetric thermal expansion (K1)

μ :

Dynamical nano-PCM filled energy storage system for solar (Pa s)

ρ :

Density (kg m3) of nano-PCM

ξ :

Porosity of metal foam

ϕ :

Weight fraction of nanoparticles

C-TES:

Cylindrical Thermal Energy Storage

MF:

Melt fraction

FEM:

Finite element method

FVM:

Finite volume method

GITT:

Generalized integral transform technique

GHG:

Greenhouse gas

PCM:

Phase change material

RHS:

Right hand side

TES:

Thermal energy storage

LHTES:

Latent heat thermal energy storage (LHTES)

TCES:

Thermochemical energy storage

SHTES:

Sensible heat thermal energy storage

BOD:

Biological oxygen demand

References

  1. Kumar A, Shukla SK. A review on thermal energy storage unit for solar thermal power plant application. Energy Proc. 2015;74:462–9. https://doi.org/10.1016/j.egypro.2015.07.728.

    Article  Google Scholar 

  2. Jouhara H, Żabnieńska-Góra A, Khordehgah N, Ahmad D, Lipinski T. Latent thermal energy storage technologies and applications: a review. Int J Thermofluids. 2020;5:100039. https://doi.org/10.1016/j.ijft.2020.100039.

    Article  Google Scholar 

  3. Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    CAS  Article  Google Scholar 

  4. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71. https://doi.org/10.1007/s10973-013-3472-x.

    CAS  Article  Google Scholar 

  5. Agyenim F. The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy. 2016;87:229–39. https://doi.org/10.1016/j.renene.2015.10.012.

    CAS  Article  Google Scholar 

  6. Ziapour BM, Hashtroudi A. Performance study of an enhanced solar greenhouse combined with the phase change material using genetic algorithm optimization method. Appl Therm Eng. 2017;110:253–64. https://doi.org/10.1016/j.applthermaleng.2016.08.153.

    CAS  Article  Google Scholar 

  7. Shalaby SM, Bek MA, El-Sebaii AA. Solar dryers with PCM as energy storage medium: a review. Renew Sustain Energy Rev. 2014;33:110–6. https://doi.org/10.1016/j.rser.2014.01.073.

    CAS  Article  Google Scholar 

  8. Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Transf. 2016;102:1159–68. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.010.

    CAS  Article  Google Scholar 

  9. Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88. https://doi.org/10.1007/s10973-012-2291-9.

    CAS  Article  Google Scholar 

  10. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45. https://doi.org/10.1016/j.rser.2007.10.005.

    CAS  Article  Google Scholar 

  11. Feldman D, Shapiro MM, Banu D. Organic phase change materials for thermal energy storage. Solar Energy Mater. 1986;13(1):1–10. https://doi.org/10.1016/0165-1633(86)90023-7.

    CAS  Article  Google Scholar 

  12. Alkan C. Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochim Acta. 2006;451(1–2):126–30. https://doi.org/10.1016/j.tca.2006.09.010.

    CAS  Article  Google Scholar 

  13. Karaipekli A, Sarı A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew Energy. 2007;32(13):2201–10. https://doi.org/10.1016/J.RENENE.2006.11.011.

    CAS  Article  Google Scholar 

  14. Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conv Manage. 2006;47(3):303–10. https://doi.org/10.1016/j.enconman.2005.03.004.

    CAS  Article  Google Scholar 

  15. Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev. 2012;16(4):2118–32. https://doi.org/10.1016/j.rser.2012.01.020.

    CAS  Article  Google Scholar 

  16. Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon. 2013;51:365–72. https://doi.org/10.1016/j.carbon.2012.08.068.

    CAS  Article  Google Scholar 

  17. Rozanna D, Chuah TG, Salmiah A, Choong TS, Sa’ari M. Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy. 2005;1(4):495–513. https://doi.org/10.1081/GE-200038722.

    CAS  Article  Google Scholar 

  18. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98. https://doi.org/10.1016/j.rser.2013.08.107.

    CAS  Article  Google Scholar 

  19. Nikolić R, Marinović-Cincović M, Gadžurić S, Zsigrai IJ. New materials for solar thermal storage—solid/liquid transitions in fatty acid esters. Sol Energy Mater Sol Cells. 2003;79(3):285–92. https://doi.org/10.1016/S0927-0248(02)00412-9.

    CAS  Article  Google Scholar 

  20. Feldman D, Banu D, Hawes D. Low chain esters of stearic acid as phase change materials for thermal energy storage in buildings. Sol Energy Mater Sol Cells. 1995;36(3):311–22.

    CAS  Article  Google Scholar 

  21. Aydın AA. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol Energy Mater Sol Cells. 2013;113:44–51. https://doi.org/10.1016/j.solmat.2013.01.024.

    CAS  Article  Google Scholar 

  22. Feldman D, Banu D, Hawes DW. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Sol Energy Mater Sol Cells. 1995;36(2):147–57.

    CAS  Article  Google Scholar 

  23. Cabeza LF, Castell A, Barreneche CD, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.

    CAS  Article  Google Scholar 

  24. Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Stable, low-cost phase change material for building applications: the eutectic mixture of decanoic acid and tetradecanoic acid. Appl Energy. 2016;168:457–64.

    CAS  Article  Google Scholar 

  25. Indartono YS, Suwono A, Pasek AD, Mujahidin D, Rizal I. Thermal characteristics evaluation of vegetables oil to be used as phase change material in air conditioning system. Jurnal Teknik Mesin. 2010;12(2):119–24. https://doi.org/10.9744/jtm.12.2.119-124.

    Article  Google Scholar 

  26. Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci. 2015;16(6):12871–90.

    CAS  Article  Google Scholar 

  27. Otamiri FO, Ogugua VN, Joshua PE, Odiba AS, Ukegbu CY. Physicochemical Characterization of Coconut Copra (Dry Flesh) oil and Production of Biodiesel from Coconut Copra Oil. Jökull J Univ Niger Nsukka. 2014;64:201–36.

    Google Scholar 

  28. Gervajio GC, Withana‐Gamage TS, Sivakumar M. Fatty acids and derivatives from coconut oil. Bailey's industrial oil and fat products. 2005: pp 1–45.

  29. Noël JA, Allred PM, White MA. Life cycle assessment of two biologically produced phase change materials and their related products. Int J Life Cycle Assess. 2015;20(3):367–76.

    Article  Google Scholar 

  30. Prapun R, Cheetangdee N, Udomrati S. Characterization of virgin coconut oil (VCO) recovered by different techniques and fruit maturities. Int Food Res J. 2016; 23(5).

  31. Srivastava Y, Semwal AD, Sajeevkumar VA, Sharma GK. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). J Food Sci Technol. 2017;54(1):45–54.

    CAS  Article  Google Scholar 

  32. Jayadas NH, Nair KP. Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int. 2006;39(9):873–8.

    CAS  Article  Google Scholar 

  33. Besbes S, Blecker C, Deroanne C, Lognay G, Drira NE, Attia H. Quality characteristics and oxidative stability of date seed oil during storage. Food Sci Technol Int. 2004;10(5):333–8. https://doi.org/10.1177/1082013204047777.

    CAS  Article  Google Scholar 

  34. Saleel CA, Mujeebu MA, Algarni S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J Therm Anal Calorim. 2019;136(2):629–36. https://doi.org/10.1007/s10973-018-7676-y.

    CAS  Article  Google Scholar 

  35. Mettawee ES, Ead A. Energy saving in building with latent heat storage. Int J Thermal Environ Eng. 2013;5(1):21–30. https://doi.org/10.5383/ijtee.05.01.003.

    Article  Google Scholar 

  36. Wonorahardjo S, Sutjahja IM, Kurnia D, Fahmi Z, Putri WA. Potential of thermal energy storage using coconut oil for air temperature control. Buildings. 2018;8(8):95. https://doi.org/10.3390/buildings8080095.

    Article  Google Scholar 

  37. Lee H, Jeong SG, Chang SJ, Kang Y, Wi S, Kim S. Thermal performance evaluation of fatty acid ester and paraffin based mixed SSPCMs using exfoliated graphite nanoplatelets (xGnP). Appl Sci. 2016;6(4):106. https://doi.org/10.3390/app6040106.

    CAS  Article  Google Scholar 

  38. Wi S, Seo J, Jeong SG, Chang SJ, Kang Y, Kim S. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Sol Energy Mater Sol Cells. 2015;143:168–73. https://doi.org/10.1016/j.solmat.2015.06.040.

    CAS  Article  Google Scholar 

  39. Afzal A, Saleel CA, Badruddin IA, Khan TY, Kamangar S, Mallick Z, Samuel OD, Soudagar ME. Human thermal comfort in passenger vehicles using an organic phase change material–an experimental investigation, neural network modelling, and optimization. Build Environ. 2020;180:107012. https://doi.org/10.1016/j.buildenv.2020.107012.

    Article  Google Scholar 

  40. De Gracia A, Cabeza LF. Phase change materials and thermal energy storage for buildings. Energy Build. 2015;103:414–9. https://doi.org/10.1016/j.enbuild.2015.06.007.

    Article  Google Scholar 

  41. Irsyad M, Indartono YS, Suwono A, Pasek AD. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system. InIOP Conference Series: Materials Science and Engineering 2015; 88 (1): 012051. IOP Publishing. https://doi.org/10.1088/1755-1315/60/1/012027

  42. Boemeke L, Marcadenti A, Busnello FM, Gottschall CB. Effects of coconut oil on human health. Open J Endocrine Metabolic Diseas. 2015;5(07):84.

    CAS  Article  Google Scholar 

  43. Li TX, Wu DL, He F, Wang RZ. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transf. 2017;115:148–57.

    CAS  Article  Google Scholar 

  44. Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87(2):371–5.

    Article  Google Scholar 

  45. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91(2):443–6.

    CAS  Article  Google Scholar 

  46. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55.

    CAS  Article  Google Scholar 

  47. Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf. 2017;112:649–61.

    CAS  Article  Google Scholar 

  48. Bhagat K, Saha SK. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew Energy. 2016;95:323–36.

    Article  Google Scholar 

  49. Ram MK, Myers PD Jr, Jotshi C, Goswami DY, Stefanakos EK, Arvanitis KD, Papanicolaou E, Belessiotis V. Microencapsulated dimethyl terephthalate phase change material for heat transfer fluid performance enhancement. Int J Energy Res. 2017;41(2):252–62. https://doi.org/10.1002/er.3615.

    CAS  Article  Google Scholar 

  50. Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol Cells. 2017;167:109–20. https://doi.org/10.1016/j.solmat.2017.03.038.

    CAS  Article  Google Scholar 

  51. Tansakul A, Chaisawang P. Thermophysical properties of coconut milk. J Food Eng. 2006;73(3):276–80.

    Article  Google Scholar 

  52. Jayadas NH, Prabhakaran Nair K, Ajithkumar G. Vegetable oils as base oil for industrial lubricants: evaluation oxidative and low temperature properties using TGA. DTA DSC InWorld Tribol Cong. 2005;42010:539–40.

    Article  Google Scholar 

  53. Stokoe WN. The rancidity of coconut oil produced by mould action. Biochemical Journal. 1928;22(1):80. https://doi.org/10.1042/bj0220080.

    CAS  Article  PubMed Central  Google Scholar 

  54. Okpokwasili GC, Molokwu CN. Yeast and mould contaminants of vegetable oils. Biores Technol. 1996;57(3):245–9.

    CAS  Article  Google Scholar 

  55. Lu H. A comparative study of storage stability in virgin coconut oil and extra virgin olive oil upon thermal treatment, 2009.

  56. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Appl Therm Eng. 2018;141:724–40. https://doi.org/10.1016/j.applthermaleng.2018.05.091.

    CAS  Article  Google Scholar 

  57. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification. Energy Convers Manage. 2018;166:241–59. https://doi.org/10.1016/j.enconman.2018.04.016.

    CAS  Article  Google Scholar 

  58. Udangawa WR, Willard CF, Mancinelli C, Chapman C, Linhardt RJ, Simmons TJ. Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials. Cellulose. 2019;26(3):1855–68. https://doi.org/10.1007/s10570-018-2151-2.

    CAS  Article  Google Scholar 

  59. Al-Jethelah MS, Tasnim SH, Mahmud S, Dutta A. Melting of nano-phase change material inside a porous enclosure. Int J Heat Mass Transf. 2016;102:773–87.

    CAS  Article  Google Scholar 

  60. Ho CJ, Gao JY. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Transf. 2013;62:2–8.

    CAS  Article  Google Scholar 

  61. Al-Jethelah M, Tasnim SH, Mahmud S, Dutta A. Nano-PCM filled energy storage system for solar-thermal applications. Renew Energy. 2018;126:137–55. https://doi.org/10.1016/j.renene.2018.02.119.

    CAS  Article  Google Scholar 

  62. Al-Jethelah M, Ebadi S, Venkateshwar K, Tasnim SH, Mahmud S, Dutta A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation. Appl Therm Eng. 2019;148:1029–42. https://doi.org/10.1016/j.applthermaleng.2018.11.121.

    CAS  Article  Google Scholar 

  63. Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Thermal Fluid Sci. 2013;50:201–12. https://doi.org/10.1016/j.expthermflusci.2013.06.010.

    CAS  Article  Google Scholar 

  64. Kasibhatla RR, König-Haagen A, Rösler F, Brüggemann D. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity. Heat Mass Transf. 2017;53(5):1735–44.

    CAS  Article  Google Scholar 

  65. Patankar S. Numerical heat transfer and fluid flow. Taylor & Francis; 2018.

  66. Fortunato B, Camporeale SM, Torresi M, Albano M. Simple mathematical model of a thermal storage with PCM. AASRI Procedia. 2012;2:241–8. https://doi.org/10.1016/j.aasri.2012.09.041.

    Article  Google Scholar 

  67. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq. 2020;306:112892. https://doi.org/10.1016/j.molliq.2020.112892.

    CAS  Article  Google Scholar 

  68. Dhaidan NS. Nanostructures assisted melting of phase change materials in various cavities. Appl Therm Eng. 2017;111:193–212. https://doi.org/10.1016/j.applthermaleng.2016.09.093.

    CAS  Article  Google Scholar 

  69. Wu YK, Lacroix M. Melting of a PCM inside a vertical cylindrical capsule. Int J Numer Meth Fluids. 1995;20(6):559–72. https://doi.org/10.1002/fld.1650200610.

    CAS  Article  Google Scholar 

  70. Al-Jethelah MS, Al-Sammarraie A, Tasnim SH, Mahmud S, Dutta A. Effect of convection heat transfer on thermal energy storage unit. Open Phys. 2018;16(1):861–7. https://doi.org/10.1515/phys-2018-0108.

    CAS  Article  Google Scholar 

  71. Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Transfer. 1986;108(1):174–81. https://doi.org/10.1115/1.3246884.

    CAS  Article  Google Scholar 

  72. Alomair M, Alomair Y, Abdullah HA, Mahmud S, Tasnim S. Experimental investigation of cylindrical thermal energy storage system using Bio-based phase change materials. In Proceedings of International Conference of Energy Harvesting, Storage, and Transfer 2017. https://doi.org/10.11159/ehst17.112

  73. Alomair M, Alomair Y, Tasnim S, Mahmud S, Abdullah H. Analyses of bio-based nano-PCM filled concentric cylindrical energy storage system in vertical orientation. J Energy Storage. 2018;20:380–94. https://doi.org/10.1016/j.est.2018.10.004.

    Article  Google Scholar 

  74. Selimefendigil F, Öztop HF. Modeling and identification of combined effects of pulsating inlet temperature and use of hybrid nanofluid on the forced convection in phase change material filled cylinder. J Taiwan Inst Chem Eng. 2021;119:90–107. https://doi.org/10.1016/j.jtice.2021.01.032.

    CAS  Article  Google Scholar 

  75. Jourabian M, Farhadi M. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study. J Mech Sci Technol. 2015;29(9):3819–30. https://doi.org/10.1007/s12206-015-0828-0.

    Article  Google Scholar 

  76. Das N, Takata Y, Kohno M, Harish S. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit. Int J Heat Mass Transf. 2017;113:423–31.

    CAS  Article  Google Scholar 

  77. Ghalambaz M, Zhang J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. Int J Heat Mass Transf. 2020;146:118832. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118832.

    Article  Google Scholar 

  78. Mehryan SA, Vaezi M, Sheremet M, Ghalambaz M. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf. 2020;151:119385. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119385.

    CAS  Article  Google Scholar 

  79. Ebadi S. Performance Enhancement of Thermal Energy Storage System using Composite Bio-based PCM (Doctoral dissertation). Thesis: University of Guelph; 2018.

    Google Scholar 

  80. Putra N, Prawiro E, Amin M. Thermal properties of beeswax/CuO nano phase-change material used for thermal energy storage. Int J Technol. 2016;7(2):244–53. https://doi.org/10.14716/ijtech.v7i2.2976.

    Article  Google Scholar 

  81. Thaib R, Amin M, Umar H. Thermal properties of beef tallow/coconut oil bio PCM using t-history method for wall building applications. Eur J Eng Technol Res. 2019;4(11):38–40. https://doi.org/10.24018/ejers.2019.4.11.1627.

    Article  Google Scholar 

  82. Venkateshwar K, Joshy N, Simha H, Mahmud S. Quantifying the nanoparticles concentration in nano-PCM. J Nanopart Res. 2019;21(12):1–10. https://doi.org/10.1007/s11051-019-4716-x.

    CAS  Article  Google Scholar 

  83. Jeong SG, Chung O, Yu S, Kim S, Kim S. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2013;117:87–92. https://doi.org/10.1016/j.solmat.2013.05.038.

    CAS  Article  Google Scholar 

  84. Silalahi AO, Sukmawati N, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of organic PCM coconut oil from T-history method and its potential as thermal energy storage in Indonesia. In IOP Conference Series: Materials Science and Engineering 2017; 214 (1): 012034. IOP Publishing. https://doi.org/10.1088/1757-899X/214/1/012034

  85. Tipvarakarnkoon T, Blochwitz R, Senge B. Rheological properties and phase change behaviors of coconut fats and oils. Ann Trans Nordic Rheol Soc. 2008;16:159–66.

    Google Scholar 

  86. Selimefendigil F, Öztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2020;200:61–75. https://doi.org/10.1016/j.solener.2019.05.062.

    Article  Google Scholar 

  87. Zwanzig SD, Lian Y, Brehob EG. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope. Energy Convers Manage. 2013;69:27–40.

    Article  Google Scholar 

  88. Gasia J, Martin M, Solé A, Barreneche C, Cabeza LF. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200°C. Appl Sci. 2017;7(7):722. https://doi.org/10.3390/app7070722.

    CAS  Article  Google Scholar 

  89. Krabbenhoft K, Damkilde L, Nazem M. An implicit mixed enthalpy–temperature method for phase-change problems. Heat Mass Transf. 2007;43(3):233–41. https://doi.org/10.1007/s00231-006-0090-1.

    Article  Google Scholar 

  90. Voller VR, Peng S. An enthalpy formulation based on an arbitrarily deforming mesh for solution of the Stefan problem. Comput Mech. 1994;14(5):492–502. https://doi.org/10.1007/BF00377601.

    Article  Google Scholar 

  91. Sutjahja IM, Putri WA, Fahmi Z, Wonorahardjo S, Kurnia D. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning. In Journal of Physics: Conference Series 2017; 877 (1): 012038. IOP Publishing. https://doi.org/10.1088/1742-6596/877/1/012038

  92. Putri WA, Fahmi Z, Sutjahja IM, Kurnia D, Wonorahardjo S. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia. InJournal of Physics: Conference Series 2016; 39 (1): 012065. IOP Publishing.

  93. Shafee A, Sheikholeslami M, Wang P, Selimefendigil F, Babazadeh H. Phase change process of nanoparticle enhanced PCM in a heat storage including unsteady conduction. J Mol Liq. 2020;309:113102. https://doi.org/10.1016/j.molliq.2020.113102.

    CAS  Article  Google Scholar 

  94. Rezaiguia I, Kadja M, Belghar N. Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid. Heat Mass Transf. 2013;49(9):1319–31.

    CAS  Article  Google Scholar 

  95. J. S. Lauck, “Evaluation of Phase Change Materials for Cooling in a Super-Insulated Passive House 59,” Portland State University, 2013.

  96. AU SR, Putri WA, Sutjahja IM, Kurnia D, Wonorahardjo S. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl26H2o as latent heat energy storage system in Indonesia. J Phys Conference Ser 2016; https://doi.org/10.1088/1742-6596/739/1/012119

  97. Wonorahardjo S, Sutjahja IM, Kurnia D. Potential of coconut oil for temperature regulation in tropical houses. J Eng Phys Thermophys. 2019;92(1):80–8. https://doi.org/10.1007/s10891-019-01909-7.

    Article  Google Scholar 

  98. Selimefendigil F, Öztop HF. Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field. J Therm Anal Calorim. 2020;140(3):1427–42. https://doi.org/10.1007/s10973-019-08667-x.

    CAS  Article  Google Scholar 

  99. Selimefendigil F, Öztop HF. Impacts of magnetic field and hybrid nanoparticles in the heat transfer fluid on the thermal performance of phase change material installed energy storage system and predictive modeling with artificial neural networks. J Energy Storage. 2020;32:101793. https://doi.org/10.1016/j.est.2020.101793.

    Article  Google Scholar 

  100. Kahwaji S, White MA. Edible oils as practical phase change materials for thermal energy storage. Appl Sci. 2019;9(8):1627. https://doi.org/10.3390/app9081627.

    CAS  Article  Google Scholar 

  101. Mettawee ES, Eid EI, Amin SA. Experimental study on space cooling with pcm thermal storage. J Appl Sci Res. 2012;8(7):3424–32.

    CAS  Google Scholar 

  102. Indartono YS, Suwono A, Pasek AD, Christantho A. Application of phase change material to save air conditioning energy in building. ASEAN Eng J. 2013;3(2):46–53.

    Google Scholar 

  103. Rudd AF. Phase-change material wallboard for distributed thermal storage in buildings. Trans Am Soc Heat Refrigerat Air Condition Eng. 1993;99(2):339–46.

    Google Scholar 

  104. Selimefendigil F, Oztop HF, Chamkha AJ. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Therm Anal Calorim. 2019;135(2):1577–94. https://doi.org/10.1007/s10973-018-7714-9.

    CAS  Article  Google Scholar 

  105. Saraç EG, Öner E, Kahraman MV. Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose. 2019;26(16):8939–50. https://doi.org/10.1007/s10570-019-02701-9.

    CAS  Article  Google Scholar 

  106. Singh D. D. Experimental and Numerical Investigation of a Household Refrigerator Integrated with a PCM Based Condenser. Shiv Nadar University, 2014.

  107. Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int J Heat Mass Transf. 2013;67:523–34. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.001.

    CAS  Article  Google Scholar 

  108. Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf. 2013;67:455–68. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.002.

    CAS  Article  Google Scholar 

  109. Xiong T, Zheng L, Shah KW. Nano-enhanced phase change materials (NePCMs): a review of numerical simulations. Appl Therm Eng. 2020;178:115492. https://doi.org/10.1016/j.applthermaleng.2020.115492.

    CAS  Article  Google Scholar 

  110. Bondareva NS, Gibanov NS, Sheremet MA. Computational study of heat transfer inside different PCMs enhanced by Al2O3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials. 2020;10(2):284.

    CAS  Article  Google Scholar 

  111. Kanimozhi B, Sanandharya K, Anand S, Kumar S. Experimental study on solar cooker using phase change materials. In Applied Mechanics and Materials 2015; 766–767: 463–467. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amm.766-767.463

  112. Zhao Y, Zou B, Li C, Ding Y. Active cooling based battery thermal management using composite phase change materials. Energy Procedia. 2019;158:4933–40. https://doi.org/10.1016/j.egypro.2019.01.697.

    CAS  Article  Google Scholar 

  113. Osterman E, Tyagi VV, Butala V, Rahim NA, Stritih U. Review of PCM based cooling technologies for buildings. Energy Build. 2012;49:37–49.

    Article  Google Scholar 

  114. Silva T, Vicente R, Soares N, Ferreira V. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build. 2012;49:235–45.

    Article  Google Scholar 

  115. Chernousov AA, Chan BY. Novel form-stable phase change material composite for high-efficiency room temperature control. Sol Energy Mater Sol Cells. 2017;170:13–20. https://doi.org/10.1016/j.solmat.2017.05.039.

    CAS  Article  Google Scholar 

  116. Beemkumar N, Yuvarajan D, Arulprakasajothi M, Elangovan K, Arunkumar T. Control of room temperature fluctuations in the building by incorporating PCM in the roof. J Therm Anal Calorim. 2020;3:1–8.

    Google Scholar 

  117. Irsyad M. Heat transfer characteristics of coconut oil as phase change material to room cooling application. In IOP Conference Series: Earth and Environmental Science 2017; 60 (1): 012027. IOP Publishing. https://doi.org/10.1088/1755-1315/60/1/012027

  118. Empey CJ. Phase change materials for thermal management of kennedy library study rooms. San Luis Obispo: California Polytechnic State University; 2018.

    Google Scholar 

  119. Alqahtani T, Mellouli S, Bamasag A, Askri F, Phelan PE. Experimental and numerical assessment of using coconut oil as a phase-change material for unconditioned buildings. Int J Energy Res. 2020;44(7):5177–96. https://doi.org/10.1002/er.5176.

    CAS  Article  Google Scholar 

  120. Zadeh SM, Mehryan SA, Sheremet M, Ghodrat M, Ghalambaz M. Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material. Int J Mech Sci. 2020;178:105609. https://doi.org/10.1016/j.ijmecsci.2020.105609.

    Article  Google Scholar 

  121. Gözde SE, Erhan Ö, Vezir KM. Developing a thermo-regulative system for nonwoven textiles using microencapsulated organic coconut oil. J Ind Text. 2020. https://doi.org/10.1177/1528083720921490.

    Article  Google Scholar 

  122. Mondal S. Phase change materials for smart textiles–An overview. Appl Therm Eng. 2008;28(11–12):1536–50. https://doi.org/10.1016/j.applthermaleng.2007.08.009.

    CAS  Article  Google Scholar 

  123. Ghalambaz M, Mehryan SA, Hajjar A, Veismoradi A. Unsteady natural convection flow of a suspension comprising Nano-Encapsulated Phase Change Materials (NEPCMs) in a porous medium. Adv Powder Technol. 2020;31(3):954–66. https://doi.org/10.1016/j.apt.2019.12.010.

    Article  Google Scholar 

  124. Ghalambaz M, Groşan T, Pop I. Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J Mol Liq. 2019;293:111432. https://doi.org/10.1016/j.molliq.2019.111432.

    CAS  Article  Google Scholar 

  125. Mehryan SA, Ghalambaz M, Gargari LS, Hajjar A, Sheremet M. Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J Energy Storage. 2020;28:101236. https://doi.org/10.1016/j.est.2020.101236.

    Article  Google Scholar 

  126. Ghalambaz M, Mehryan SA, Mashoofi N, Hajjar A, Chamkha AJ, Sheremet M, Younis O. Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Adv Powder Technol. 2020;31(11):4470–81. https://doi.org/10.1016/j.apt.2020.09.022.

    CAS  Article  Google Scholar 

  127. Ghalambaz M, Zadeh SM, Mehryan SA, Pop I, Wen D. Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Appl Math Model. 2020;77:1936–53. https://doi.org/10.1016/j.apm.2019.09.015.

    Article  Google Scholar 

  128. Zadeh SM, Mehryan SA, Ghalambaz M, Ghodrat M, Young J, Chamkha A. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy. 2020;213:118761. https://doi.org/10.1016/j.energy.2020.118761.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Research Group Program under Grant No: R.G.P.1/104/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ahamed Saleel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saleel, C.A. A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics. J Therm Anal Calorim 147, 4451–4472 (2022). https://doi.org/10.1007/s10973-021-10839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10839-7

Keywords

  • Coconut oil
  • Phase change material
  • Nano-additives
  • Metal foams
  • Melting fraction
  • Solid–fluid interface
  • Energy stored