Skip to main content
Log in

Experimentally evaluation of split air conditioner integrated with humidification-dehumidification desalination unit for better thermal comfort, produce freshwater, and energy saving

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present experimental study aims to achieve the better indoor thermal comfort, produce freshwater, and energy saving. To investigate this idea, split air conditioner was integrated with solar assisted humidification-dehumidification (HDH) desalination unit, the HDH desalination unit was designed to produce the freshwater and also used as a pre-cooling unit to cool the condenser of split air conditioner in order to reduce a power consumption, increases the cooling capacity, and COP. To obtain the effect of utilizing the HDH desalination unit as pre-cooling unit on a performance of the split air conditioner, two operating cases were suggested to run the HDH unit and the split air conditioner. In the first operating case, the HDH unit was operated separately from the air conditioner. In the second operating case, the HDH unit was connected to the condenser of air conditioner to cool the condenser. Is this case the cold air leaving from the dehumidifier of the HDH desalination unit was used to cool the condenser of the split air conditioner. The results show that when the HDH desalination unit combined with the split air conditioner, (i) the saving in power consumption of air conditioner reached 18.4%, (ii) COP for the air conditioner improved by 48.5%, (iii) accumulative freshwater production reached 36.49 L day−1, and (iv) the improvement in GOR for utilizing the proposed hybrid system reached 60.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COP:

Coefficient of performance

GOR:

Gain output ratio

HDH:

Humidification-dehumidification

h :

Specific enthalpy (J kg1)

h fg :

Latent heat (J kg1)

I :

Current (A)

\(\dot{m}_{{{\text{fw}}}}\) :

Freshwater mass flow rate (kg s1)

\(\dot{m}_{{\text{R}}}\) :

Refrigerant mass flow (kg s1)

\(\dot{Q}_{{\text{e}}}\) :

Evaporator capacity (W)

T:

Temperature (°C)

\(\dot{W}_{{\text{c}}}\) :

Compressor power (W)

\(\dot{W}_{{{\text{blower}}}}\) :

Air blower power (W)

\(\dot{W}_{{{\text{fan}}}}\) :

Fan power (W

References

  1. Wang T, Sheng C, Nnanna AGA. Experimental investigation of air conditioning system using evaporative cooling condenser. Energy Build. 2014;81:435–43. https://doi.org/10.1016/j.enbuild.2014.06.047.

    Article  Google Scholar 

  2. Walser S, Gerstner D, Brenner B, Holler C, Liebl B, Herr C. Assessing the environmental health relevance of cooling towers-a systematic review of legionellosis outbreaks. Int J Hyg Environ Health. 2014;217(2–3):145–54. https://doi.org/10.1016/j.ijheh.2013.08.002.

    Article  PubMed  Google Scholar 

  3. Kabeel AE, Abdelgaied M. Numerical and experimental investigation of a novel configuration of indirect evaporative cooler with internal baffles. Energy Convers Manag. 2016;126:526–36. https://doi.org/10.1016/j.enconman.2016.08.028.

    Article  Google Scholar 

  4. Kabeel AE, Bassuoni MM, Abdelgaied M. Experimental study of a novel integrated system of indirect evaporative cooler with internal baffles and evaporative condenser. Energy Convers Manag. 2017. Doi:https://doi.org/10.1016/j.enconman.2017.02.025

  5. American Society of Heating, Refrigerating, and Air Conditioning Engineers, ASHRAE Handbook-HVAC Systems and Equipment. 2012.

  6. Youbi-Idrissi M, Macchi-Tejeda H, Fournaison L, Guilpart J. Numerical model of sprayed air cooled condenser coupled to refrigerating system. Energy Convers Manag. 2007;48(7):1943–51. https://doi.org/10.1016/j.enconman.2007.01.025.

    Article  CAS  Google Scholar 

  7. Yang J, Chan K, Wu X, Yang X, Zhang H. Performance enhancement of air-cooled chillers with water mist: experimental and analytical investigation. Appl Therm Eng. 2012;40:114–20. https://doi.org/10.1016/j.applthermaleng.2012.02.001.

    Article  Google Scholar 

  8. Yu F, Chan K. Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling. Appl Energy. 2020;87(4):1198–206. https://doi.org/10.1016/j.apenergy.2009.08.023.

    Article  Google Scholar 

  9. Islam M, Jahangeer K, Chua K. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems. Energy. 2015;87:390–9. https://doi.org/10.1016/j.energy.2015.05.005.

    Article  Google Scholar 

  10. Hajidavalloo H. Application of evaporative cooling on the condenser of window-air-conditioner. Appl Therm Eng. 2007;27(11–12):1937–43. https://doi.org/10.1016/j.applthermaleng.2006.12.014.

    Article  Google Scholar 

  11. Hajidavalloo E, Eghtedari H. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser. Int J Refrig. 2010;33(5):982–8. https://doi.org/10.1016/j.ijrefrig.2010.02.001.

    Article  Google Scholar 

  12. Martinez P, Ruiz J, Cutillas CG, Martinez PJ, Kaiser AS, Lucas M. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser. Appl Therm Eng. 2016;105:1041–50. https://doi.org/10.1016/j.applthermaleng.2016.01.067.

    Article  Google Scholar 

  13. Harby K, Al-Amri F. An investigation on energy savings of a split air-conditioning using different commercial cooling pad thicknesses and climatic conditions. Energy. 2019;182:321–36. https://doi.org/10.1016/j.energy.2019.06.031.

    Article  Google Scholar 

  14. Pan L, Liu C, Zhang Z, Wang T, Shi J, Chen J. Energy-saving effect of utilizing recirculated air in electric vehicle air conditioning system. Int J Refrig. 2019;102:122–9. https://doi.org/10.1016/j.ijrefrig.2019.03.018.

    Article  Google Scholar 

  15. Zhu Y, Jin X, Fang X, Du Z. Optimal control of combined air conditioning system with variable refrigerant flow and variable air volume for energy saving. Int J Refrig. 2014;42:14–25. https://doi.org/10.1016/j.ijrefrig.2014.02.006.

    Article  Google Scholar 

  16. Hosoz M, Kilicarslan A. Performance evaluations of refrigeration systems with air-cooled, water-cooled and evaporative condensers. Int J Energy Res. 2004;28(8):683–96. https://doi.org/10.1002/er.990.

    Article  Google Scholar 

  17. Waly M, Chakroun W, Al-Mutawa NK. Effect of pre-cooling of inlet air to condensers of air-conditioning units. Int J Energy Res. 2005;29(8):781–94.

    Article  Google Scholar 

  18. Nada SA, Elattar HF, Fouda A. Energy-efficient hybrid A/C and freshwater production system proposed for high latent load spaces. Int J Energy Res. 2019;43:6812–26. https://doi.org/10.1002/er.4677.

    Article  Google Scholar 

  19. Elhelw M, El-Maghlany WM. Thermodynamic analysis of two air conditioning systems with ice thermal storage in Egypt. J Therm Anal Calorim. 2020;140:2563–73. https://doi.org/10.1007/s10973-019-08999-8.

    Article  CAS  Google Scholar 

  20. Prabakaran R, Lal DM, Devotta S. Effect of thermostatic expansion valve tuning on the performance enhancement and environmental impact of a mobile air conditioning system. J Therm Anal Calorim. 2021;143:335–50. https://doi.org/10.1007/s10973-019-09224-2.

    Article  CAS  Google Scholar 

  21. Moazzez AF, Najaf G, Ghobadian B, Hoseini SS. Numerical simulation and experimental investigation of air cooling system using thermoelectric cooling system. J Therm Anal Calorim. 2020;139:2553–63. https://doi.org/10.1007/s10973-019-08899-x.

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhu C, Zhang H, Zheng W, You S, Zhen Y. Experimental study of a humidification-dehumidification desalination system with heat pump unit. Desalination. 2018;442:108–17. https://doi.org/10.1016/j.desal.2018.05.020.

    Article  CAS  Google Scholar 

  23. Narayan GP, St John MG, Zubair SM, Lienhard JH. Thermal design of the humidification dehumidification desalination system: an experimental investigation. Int J Heat Mass Trans. 2013;58:740–8. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035.

    Article  CAS  Google Scholar 

  24. Bourouni K, Chaibi MT, Tadrist L. Water desalination by humidification and dehumidification of air: state of the art. Desalination. 2001;137:167–76. https://doi.org/10.1016/S0011-9164(01)00215-6.

    Article  CAS  Google Scholar 

  25. Kang H, Yang Y, Chang Z, Zheng H, Duan Z. Performance of a two-stage multi effect desalination system based on humidification–dehumidification process. Desalination. 2014;344:339–49. https://doi.org/10.1016/j.desal.2014.04.004.

    Article  CAS  Google Scholar 

  26. Srithar K, Rajaseenivasan T. Recent fresh water augmentation techniques in solar still and HDH desalination: a review. Renew Sust Energy Rev. 2018;82:629–44. https://doi.org/10.1016/j.rser.2017.09.056.

    Article  Google Scholar 

  27. Evron Y, Gommed K, Grossman G. Efficient deep dehumidification hybrid air conditioning system. Int J Refrig. 2019;105:50–8. https://doi.org/10.1016/j.ijrefrig.2018.11.008.

    Article  Google Scholar 

  28. Patel V, Patel R, Patel J. Theoretical and experimental investigation of bubble column humidification and thermoelectric cooler dehumidification water desalination system. Int J Energy Res. 2020;44(2):890–901. https://doi.org/10.1002/er.4931.

    Article  CAS  Google Scholar 

  29. Shekarchi N, Shahnia F. A comprehensive review of solar-driven desalination technologies for off-grid greenhouses. Int J Energy Res. 2019;43:1357–86. https://doi.org/10.1002/er.4268.

    Article  Google Scholar 

  30. Li K, Wu W, Hu K, Wang L, Hua R. Performance analysis of a novel household water purification system based on humidification-dehumidification principle. Desalination. 2019;469:114099. https://doi.org/10.1016/j.desal.2019.114099.

    Article  CAS  Google Scholar 

  31. Zhao Y, Zheng H, Liang S, Zhang N, Ma XI. Experimental research on four-stage cross flow humidification dehumidification (HDH) solar desalination system with direct contact dehumidifiers. Desalination. 2019;467:147–57. https://doi.org/10.1016/j.desal.2019.06.003.

    Article  CAS  Google Scholar 

  32. Gholizadeh T, Vajdi M, Rostamzadeh H. Freshwater and cooling production via integration of an ethane ejector expander transcritical refrigeration cycle and a humidification-dehumidification unit. Desalination. 2020;477:114259. https://doi.org/10.1016/j.desal.2019.114259.

    Article  CAS  Google Scholar 

  33. Yang Y. Pressure effect on an ocean-based humidification-dehumidification desalination process. Desalination. 2019;468:114056. https://doi.org/10.1016/j.desal.2019.06.022.

    Article  CAS  Google Scholar 

  34. Huang X, Ling X, Li Y, Liu W, Ke T. A graphical method for the determination of optimum operating parameters in a humidification-dehumidification desalination system. Desalination. 2019;455:19–33. https://doi.org/10.1016/j.desal.2018.12.013.

    Article  CAS  Google Scholar 

  35. Capocelli M, Balsamo M, Lancia A, Barba D. Process analysis of a novel humidification-dehumidification-adsorption (HDHA) desalination method. Desalination. 2018;429:155–66. https://doi.org/10.1016/j.desal.2017.12.020.

    Article  CAS  Google Scholar 

  36. Kasaeian A, Babaei S, Jahanpanah M, Sarrafha H, Alsagri AS, Ghaffarian S, Yan WM. Solar humidification-dehumidification desalination systems: a critical review. Energy Conver Manag. 2019;201:112129. https://doi.org/10.1016/j.enconman.2019.112129.

    Article  Google Scholar 

  37. Garg K, Khullar V, Das SK, Tyagi H. Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector. J Therm Anal Calorim. 2019;135:1465–78. https://doi.org/10.1007/s10973-018-7547-6.

    Article  CAS  Google Scholar 

  38. Kabeel AE, Abdelgaied M, Mahmoud GM. Performance evaluation of continuous solar still water desalination system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09547-5.

    Article  Google Scholar 

  39. Tlili1 I, Osman M, Barhoumi EM, Alarifi I, Abo-Khalil AG, Praveen RP, Sayed K. Performance enhancement of a humidification–dehumidification desalination system. J Therm Anal Calorim. 2020; 140:309–319. Doi:https://doi.org/10.1007/s10973-019-08775-8

  40. Hou S. Two-stage solar multi-effect humidification dehumidification desalination process plotted from pinch analysis. Desalination. 2008;222:572–8. https://doi.org/10.1016/j.desal.2007.01.127.

    Article  CAS  Google Scholar 

  41. Zamen M, Soufari SM, Vahdat SA, Amidpour M, Zeinali MA, Izanloo H, Aghababaie H. Experimental investigation of a two-stage solar humidification–dehumidification desalination process. Desalination. 2014;332:1–6. https://doi.org/10.1016/j.desal.2013.10.018.

    Article  CAS  Google Scholar 

  42. Chang ZH, Zheng HF, Yang YJ, Su YH, Duan ZC. Experimental investigation of a novel multi-effect solar desalination system based on humidification-dehumidification process. Renew Energy. 2014;69:253–9. https://doi.org/10.1016/j.renene.2014.03.048.

    Article  Google Scholar 

  43. Kabeel AE, Abdelgaied M. Experimental evaluation of a two-stage indirect solar dryer with reheating coupled with HDH desalination system for remote. Desalination. 2018;425:22–9. https://doi.org/10.1016/j.desal.2017.10.016.

    Article  CAS  Google Scholar 

  44. Hou S, Ye S, Zhang H. Performance optimization of solar humidification–dehumidification desalination process using Pinch technology. Desalination. 2005;183:143–9. https://doi.org/10.1016/j.desal.2005.02.047.

    Article  CAS  Google Scholar 

  45. Kabeel AE, Abdelgaied M. A new configuration of the desiccant dehumidifier with cut-segmental silica-gel baffles and water cooling for air conditioning coupled with HDH desalination system. Int J Refrig. 2019;103:155–62. https://doi.org/10.1016/j.ijrefrig.2019.04.009.

    Article  CAS  Google Scholar 

  46. Gang W, Zheng H, Kang H, Yang Y, Cheng P, Chang Z. Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification–dehumidification processes. Desalination. 2016;378:100–7. https://doi.org/10.1016/j.desal.2015.09.024.

    Article  CAS  Google Scholar 

  47. Kabeel AE, Abdelgaied M, Feddaoui M. Hybrid system of an indirect evaporative air cooler and HDH desalination system assisted by solar energy for remote areas. Desalination. 2018;439:162–7. https://doi.org/10.1016/j.desal.2018.04.013.

    Article  CAS  Google Scholar 

  48. El-Agouz SA, Sathyamurthy R, Manokar AM. Improvement of humidification–dehumidification desalination unit using a desiccant wheel. Chem Eng Res Des. 2018;131:104–16. https://doi.org/10.1016/j.cherd.2017.06.004.

    Article  CAS  Google Scholar 

  49. Kabeel AE, Abdelgaied M, Zakaria Y. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system. Energy Conv Manag. 2017;150:382–91. https://doi.org/10.1016/j.enconman.2017.08.032.

    Article  Google Scholar 

  50. Kabeel AE, Abdelgaied M, Zakaria Y. Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air. Energy Conver Manag. 2019;198:111808. https://doi.org/10.1016/j.enconman.2019.111808.

    Article  Google Scholar 

  51. He W, Yang H, Han D. Thermodynamic investigation and optimization of a heat pump coupled open-air, open-water humidification dehumidification desalination system with a direct contact dehumidifier. Desalination. 2019;469:114101. https://doi.org/10.1016/j.desal.2019.114101.

    Article  CAS  Google Scholar 

  52. Shafii MB, Jafargholi H, Faegh M. Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump. Desalination. 2018;437:81–8. https://doi.org/10.1016/j.desal.2018.03.004.

    Article  CAS  Google Scholar 

  53. Dehghani S, Date A, Akbarzadeh A. Performance analysis of a heat pump driven humidification-dehumidification desalination system. Desalination. 2018;445:95–104. https://doi.org/10.1016/j.desal.2018.07.033.

    Article  CAS  Google Scholar 

  54. Xu H, Zhao Y, Dai YJ. Experimental study on a solar assisted heat pump desalination unit with internal heat recovery based on humidification-dehumidification process. Desalination. 2019;452:247–57. https://doi.org/10.1016/j.desal.2018.11.019.

    Article  CAS  Google Scholar 

  55. Santosh R, Kumaresan G, Selvaraj S, Arunkumar T, Velraj R. Investigation of humidification-dehumidification desalination system through waste heat recovery from household air conditioning unit. Desalination. 2019;467:1–11. https://doi.org/10.1016/j.desal.2019.05.016.

    Article  CAS  Google Scholar 

  56. Lawal DU, Antar MA. Investigation of heat pump-driven humidification–dehumidification desalination system with energy recovery option. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09794-6.

    Article  Google Scholar 

  57. Anand B, Murugavelh S. Performance analysis of a novel augmented desalination and cooling system using modified vapor compression refrigeration integrated with humidification-dehumidification desalination. J Clean Prod. 2020;255:120224. https://doi.org/10.1016/j.jclepro.2020.120224.

    Article  CAS  Google Scholar 

  58. Wang N, Wang D, Dong J, Wang H, Wang R, Shao L, Zhu Y. Performance assessment of PCM-based solar energy assisted desiccant air conditioning system combined with a humidifcation-dehumidifcation desalination unit. Desalination. 2020;496:114705. https://doi.org/10.1016/j.desal.2020.114705.

    Article  CAS  Google Scholar 

  59. Holman JP. Experimental methods for engineers. 8th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

Download references

Acknowledgements

The authors extend their thanks and gratitude to Faculty of engineering Delta University for science and technology Egypt for his support to this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kabeel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabeel, A.E., Abdelgaied, M. & Omara, Z.M. Experimentally evaluation of split air conditioner integrated with humidification-dehumidification desalination unit for better thermal comfort, produce freshwater, and energy saving. J Therm Anal Calorim 147, 4197–4207 (2022). https://doi.org/10.1007/s10973-021-10810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10810-6

Keywords

Navigation