Skip to main content
Log in

Thermal stresses and efficiency analysis of a radial porous fin with radiation and variable thermal conductivity and internal heat generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The porous fin of radial profile is considered in the current analysis along with the radiation and thermal-dependent internal heat generation condition. In addition, two different cases have been examined based on the linear dependency and exponential dependency of thermal conductivity on temperature. The Darcy’s law is used to study the porous nature of fin. The modeled governing equation is a second-order nonlinear ordinary differential equation and is solved via Runge–Kutta–Fehlberg fourth–fifth-order method. The important terms are grouped as dimensionless parameters and discussed their influence on the heat transfer rate and thermal stresses of the fin. The thermal stresses like radial stress and tangential stress are addressed comprehensively and interpreted graphically. Also, the fin efficiency is defined and discussed graphically. It is found that the tangential stress shows higher compression near fin base region and larger tensile stress near tip radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A:

Thermal conductivity parameter

Cp :

Specific heat at constant pressure (J kg-1 K-1)

CT :

Temperature ratio

Da :

Darcy number

E :

Young’s modulus

G :

Generation number

K :

Permeability (m2)

Nr :

Radiation–conduction parameter

R :

Dimensionless radius

R* :

Ratio of tip radius to base radius

Ra :

Rayleigh number

T :

Local fin temperature (K)

T :

Ambient temperature (K)

T b :

Base temperature (K)

b2 :

Variable parameter (K-1)

g:

Acceleration due to gravity (m s-2)

h :

Heat transfer coefficient (W m-2 K-1)

k 0 :

Thermal conductivity of the material (W m-1 K-1)

q :

Heat transfer rate (W)

r :

Fin radius (m)

r b :

Base radius (m)

r t :

Tip radius (m)

t :

Fin thickness (m)

ρ f :

Density of the ambient fluid (kg m-3)

νf :

Kinematic viscosity (m2 s-1)

ν:

Poisson’s ratio

θ :

Non-dimensional temperature

ϕ :

Porosity

σ :

Stefan-Boltzmann constant (W m-2 K-4)

σ r ϕ :

Radial and tangential stress

ε :

Surface emissivity of fin

ε r ϕ :

Radial and tangential strain

α :

Linear coefficient of thermal expansion

β f :

Volumetric thermal expansion coefficient

References

  1. Kiwan S, Al-Nimr MA. Using porous fins for heat transfer enhancement. J Heat Transf. 2001;123(4):790–5.

    Article  CAS  Google Scholar 

  2. Kiwan S. Thermal analysis of natural convection porous fins. Transp Porous Media. 2007;67(1):17.

    Article  CAS  Google Scholar 

  3. Gorla RS, Bakier AY. Thermal analysis of natural convection and radiation in porous fins. Int Commun Heat Mass Transf. 2011;38(5):638–45.

    Article  Google Scholar 

  4. Hatami M, Ganji DD. Thermal performance of circular convective–radiative porous fins with different section shapes and materials. Energy Convers Manage. 2013;76:185–93.

    Article  CAS  Google Scholar 

  5. Torabi M, Yaghoobi H. Series solution for convective-radiative porous fin using differential transformation method. J Porous Media. 2013;16(4):341–9.

    Article  Google Scholar 

  6. Aziz A, Torabi M, Zhang K. Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: homogeneous and functionally graded materials. Energy Convers Manage. 2013;74:366–76.

    Article  Google Scholar 

  7. Darvishi MT, Khani F, Gorla RS. Natural convection and radiation in a radial porous fin with variable thermal conductivity. Int J Appl Mech Eng. 2014;19(1):27–37.

    Article  Google Scholar 

  8. Gireesha BJ, Sowmya G, Macha M. Temperature distribution analysis in a fully wet moving radial porous fin by finite element method. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-12-2018-0744.

    Article  Google Scholar 

  9. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium. J Therm Anal Calorim. 2020;139(2):1345–53.

    Article  CAS  Google Scholar 

  10. Abbas Z, Rauf A, Shehzad SA. Aspects of heterogenous and homogenous reactions on hydromagnetic oscillatory rotating flow in porous medium. J Porous Media. 2020;23(9):837–50.

    Article  Google Scholar 

  11. Aziz A, Bouaziz MN. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Manage. 2011;52(8–9):2876–82.

    Article  Google Scholar 

  12. Hatami M, Hasanpour A, Ganji DD. Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers Manage. 2013;74:9–16.

    Article  CAS  Google Scholar 

  13. Ghasemi SE, Hatami M, Ganji DD. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud Thermal Eng. 2014;4:1–8.

    Article  Google Scholar 

  14. Hoshyar H, Ganji DD, Abbasi M. Determination of temperature distribution for porous fin with temperature-dependent heat generation by homotopy analysis method. J Appl Mech Eng. 2015;4:153.

    Google Scholar 

  15. Sowmya G, Gireesha BJ, Sindhu S. Thermal exploration of radial porous fin fully wetted with SWCNTs and MWCNTs along with temperature-dependent internal heat generation. Proceedings of the Institution of Mechanical Engineers, Part C J Mech Eng Sci. 2020:0954406220931555.

  16. Wu SS. Analysis on transient thermal stresses in an annular fin. J Therm Stress. 1997;20(6):591–615.

    Article  Google Scholar 

  17. Chiu CH, Chen CO. Thermal stresses in annular fins with temperature-dependent conductivity under periodic boundary condition. J Therm Stress. 2002;25(5):475–92.

    Article  Google Scholar 

  18. Chiu CH, Chen CK. Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity. Acta Mech. 2002;157(1–4):147–58.

    Article  Google Scholar 

  19. Wang CC, Liao WJ, Yang CY. Hybrid spline difference method for heat transfer and thermal stresses in annular fins. Numer Heat Transf Part B Fundament. 2013;64(1):71–88.

    Article  Google Scholar 

  20. Mallick A, Ghosal S, Sarkar PK, Ranjan R. Homotopy perturbation method for thermal stresses in an annular fin with variable thermal conductivity. J Therm Stress. 2015;38(1):110–32.

    Article  Google Scholar 

  21. Yıldırım A, Yarımpabuç D, Celebi K. Thermal stress analysis of functionally graded annular fin. J Therm Stresses. 2019;42(4):440–51.

    Article  Google Scholar 

  22. Yıldırım A, Celebi K, Yarımpabuç D. A practical approach for thermal stress of functionally graded annular fin. J Eng Thermophys. 2019;28(4):556–68.

    Article  Google Scholar 

  23. Yildirim A, Yarimpabuç D, Celebi K. Transient thermal stress analysis of functionally graded annular fin with free base. J. Thermal Stress. 2020:1–2.

  24. Aziz A, Makinde OD. Entropy generation minimization design of a two-dimensional orthotropic convection pin fin. Int J Exergy. 2010;7:579–92.

    Article  Google Scholar 

  25. Mhlongo MD, Moitsheki RJ, Makinde OD. Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions. Int J Heat Mass Transf. 2013;57(1):117–25.

    Article  Google Scholar 

  26. Hatami M, Ganji DD, Gorji-Bandpy M. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Stud Thermal Eng. 2014;4:53–64.

    Article  Google Scholar 

  27. Hatami M, Jafaryar M, Ganji DD, Gorji-Bandpy M. Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int Commun Heat Mass Transf. 2014;57:254–63.

    Article  CAS  Google Scholar 

  28. Hatami M, Ganji DD, Gorji-Bandpy M. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manage. 2015;97:26–41.

    Article  Google Scholar 

  29. Moitsheki RJ, Makinde OD. Analysis of nonlinear heat transfer in solids of various geometries with variable thermal conductivity and heat source. Defect Diffus Forum. 2017;377:1–16.

    Article  Google Scholar 

  30. Fallo N, Moitsheki RJ, Makinde OD. Analysis of heat transfer in a cylindrical spine fin with variable thermal properties. Defect Diffus Forum. 2018;387:10–22.

    Article  Google Scholar 

  31. Sowmya G, Gireesha BJ, Makinde OD. Thermal performance of fully wet longitudinal porous fin with temperature-dependent thermal conductivity, surface emissivity and heat transfer coefficient. Multidiscip Model Mater Struct. 2020;16(4):749–64.

    Article  CAS  Google Scholar 

  32. Gireesha BJ, Sowmya G. Heat transfer analysis of an inclined porous fin using Differential Transform Method. Int. J. Ambient Energy. 2020:1–7.

Download references

Acknowledgement

The authors thank the Department of Science and Technology, Government of India for their support under DST-FIST programme for HEIs. (Grant No. SR/FST/MS-I/2018/23(C)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowmya, G., Gireesha, B.J. Thermal stresses and efficiency analysis of a radial porous fin with radiation and variable thermal conductivity and internal heat generation. J Therm Anal Calorim 147, 4751–4762 (2022). https://doi.org/10.1007/s10973-021-10801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10801-7

Keywords

Navigation