Skip to main content
Log in

Fuzzy logic algorithm-based optimization of heat transfer and thermal conductivity behaviour of Al–Si3N4 Nano and Al–Gr–Si3N4 hybrid composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behaviour of gravity die stir casted LM6 alloy with Graphite and silicon nitride nano particle is investigated in this study. Al–Gr–Si3N4 hybrid composite, Al–Si3N4 nanocomposite and Al–Gr nanocomposite were fabricated to investigate the thermal conductivity, specific heat, diffusivity and heat transfer rate. The density and porosity of the casted composites were found to check the soundness of the casted composites. The difference in porosity is around 0.1% for the nano and hybrid composite. The thermal conductivity of the nanocomposite is approximately 12% higher than hybrid composite. Heat transfer for all the composite increases with the increase in power input. The application of the fuzzy logic analysis coupled with experimental methods was developed to optimize the precision and accuracy of the Al–Gr–Si3N4 hybrid composite thermal conductivity and heat transfer rate. The developed fuzzy logic model can be used to evaluate the heat transfer produced by Al–Gr–Si3N4 hybrid composite and also with low prediction errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hyatt M, Caton R, Lovell D. Advanced materials development in commercial aircraft. InAircraft design and operations meeting 1989 (p. 2127). https://doi.org/10.2514/6.1989-2127

  2. Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol. 2018;34(1):73–91. https://doi.org/10.1016/j.jmst.2017.11.041.

    Article  CAS  Google Scholar 

  3. Nakai M, Eto T. New aspect of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng, A. 2000;285(1–2):62–8. https://doi.org/10.1016/S0921-5093(00)00667-5.

    Article  Google Scholar 

  4. Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Metals Soc China. 2014;24(7):1995–2002.

    Article  CAS  Google Scholar 

  5. Qu XH, Zhang L, Mao WU, Ren SB. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci Mater Int. 2011;21(3):189–97. https://doi.org/10.1016/S1002-0071(12)60029-X.

    Article  Google Scholar 

  6. Abdel-Gawad SA, Osman WM, Fekry AM. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater. Surf Interf. 2019;1(14):314–23.

    Article  Google Scholar 

  7. Bodunrin MO, Alaneme KK, Chown LH. Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol. 2015;4(4):434–45. https://doi.org/10.1016/j.jmrt.2015.05.003.

    Article  CAS  Google Scholar 

  8. Selvam JD, Dinaharan I, Philip SV, Mashinini PM. Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+ Al2O3) hybrid aluminum matrix composites. J Alloy Compd. 2018;5(740):529–35. https://doi.org/10.1016/j.jallcom.2018.01.016.

    Article  CAS  Google Scholar 

  9. Kumar N, Soren S. Selection of reinforcement for Al/Mg alloy metal matrix composites. Mater Today Proc. 2020;21:1605. https://doi.org/10.1016/j.matpr.2019.11.238.

    Article  CAS  Google Scholar 

  10. Liu Y, Dan Y, Bian Y, Han Z. The thermal conductivity of a composite material with nano-sized nonmetal particles embedded in a metal matrix. J Alloy Compd. 2019;15(801):136–41. https://doi.org/10.1016/j.jallcom.2019.06.126.

    Article  CAS  Google Scholar 

  11. Zare R, Sharifi H, Saeri MR, Tayebi M. Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite. J Alloy Compd. 2019;15(801):520–8. https://doi.org/10.1016/j.jallcom.2019.05.317.

    Article  CAS  Google Scholar 

  12. Wang C, Min G, Kang SB. Thermal conducting property of SiCp-reinforced copper matrix composites by hot pressing. J Compos Mater. 2011;45(18):1849–52. https://doi.org/10.1177/0021998310387685.

    Article  CAS  Google Scholar 

  13. Chen JK, Huang IS. Thermal properties of aluminum–graphite composites by powder metallurgy. Compos B Eng. 2013;44(1):698–703. https://doi.org/10.1016/j.compositesb.2012.01.083.

    Article  CAS  Google Scholar 

  14. Reddy KS, Kannan M, Karthikeyan R, Sripad A, Jain PK. Investigation of thermal and mechanical properties of Al7020/SiC/graphite hybrid metal matrix composites. Mater Today Proc. 2020;26:2746–53. https://doi.org/10.1016/j.matpr.2020.02.574.

    Article  CAS  Google Scholar 

  15. Etter T, Schulz P, Weber M, Metz J, Wimmler M, Löffler JF, Uggowitzer PJ. Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A. 2007;448(1–2):1–6. https://doi.org/10.1016/j.msea.2006.11.088.

    Article  CAS  Google Scholar 

  16. Gao L, Liu Z, Sun B, Che D, Li S. Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system based on response surface method. Renew Energy. 2020;153:669–80. https://doi.org/10.1016/j.renene.2020.01.157.

    Article  Google Scholar 

  17. Senthilkumar R, Nandhakumar AJ, Prabhu S. Analysis of natural convective heat transfer of nano coated aluminium fins using Taguchi method. Heat Mass Transf. 2013;49(1):55–64.

    Article  CAS  Google Scholar 

  18. Prabhu S, Vinayagam BK. Adaptive neuro fuzzy inference system modelling of multi-objective optimisation of electrical discharge machining process using single-wall carbon nanotubes. Aust J Mech Eng. 2015;13(2):97–117. https://doi.org/10.7158/M13-074.2015.13.2.

    Article  Google Scholar 

  19. Zhou Y, Hyuga H, Kusano D, Yoshizawa YI, Ohji T, Hirao K. Development of high-thermal-conductivity silicon nitride ceramics. J Asian Ceram Soc. 2015;3(3):221–9. https://doi.org/10.1016/j.jascer.2015.03.003.

    Article  Google Scholar 

  20. Raju CB, Verma S, Sahua MN, Jain PK, Choudary S. Silicon nitride/SiAlON ceramics—a review. http://hdl.handle.net/123456789/24334

  21. Katz RN. Commercial applications of silicon nitride based ceramics. Materials Technology. 1993;8(7–8):142–8. https://doi.org/10.1080/10667857.1993.11784967.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nano Devices Lab, DSC lab , Heat and Mass Transfer Lab of SRM IST for conducting the experiments and Foundry cum Moulding Lab of SRM IST for testing and fabricating the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prabhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambigai, R., Prabhu, S. Fuzzy logic algorithm-based optimization of heat transfer and thermal conductivity behaviour of Al–Si3N4 Nano and Al–Gr–Si3N4 hybrid composite. J Therm Anal Calorim 147, 4059–4071 (2022). https://doi.org/10.1007/s10973-021-10799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10799-y

Keywords

Navigation