Skip to main content
Log in

Investigation of a hybrid thermochemical Cu–Cl cycle, carbon capturing, and ammonia production process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a new integrated system is proposed consisting of four subsystems, including a Cu–Cl cycle, a carbon capture cycle (sodium-based sorbent), an ammonia production unit, and a methanation unit. Carbon capturing cycle with sodium-based sorbent could adsorb 1.5 times more than other sorbents such as amine-based sorbent. Moreover, Cu–Cl cycle is one of the promising cycles in terms of economic and low temperature. Therefore, integrating these two cycles with ammonia and methane production unit is the novelty for this paper. Also, Aspen plus software was used to simulate the developed system to evaluate the process of the system. Moreover, sensitivity analysis and mass/energy balance are performed for the developed systems through the simulation. The energy required to capture carbon dioxide was found to be 6.313 MW per kg of CO2, and the overall efficiency of the system is equal to 19.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

bar:

Pressure

°C:

Degree Celsius

Cp:

Specific heat (KJ mol−1 K−1)

DHFORMa :

Standard heat of formation (kJ mol1)

DHSFRMb :

Standard solid heat of formation (kJ mol1)

DGFORMc :

Standard Gibbs free energy of formation (kJ mol1)

DGSFRMd :

Standard solid Gibbs free energy of formation (kJ mol1)

\(E_{{{\mathrm{CO}}_{2} }}\) :

Total energy consumption per one kg of CO2

\(\eta_{{\mathrm{Cu - Cl}}}\) :

Energy efficiency of Cu–Cl cycle

\(\eta_{{{\mathrm{sys}}}}\) :

Overall efficiency of the developed system

\(\eta_{{{\mathrm{CCC}}}}\) :

Carbon capture cycle efficiency

g:

Gram

H:

Enthalpy of formation (kJ mol−1)

h:

Hour

J:

Joule

K:

Kelvin

k:

Kilo

LHV:

Lower heat value (kJ kg−1)

M:

Mega

\(\dot{m}\) :

Mass flow (kg s−1)

\(\dot{Q}\) :

Heat flow (kW)

s:

Second

V:

Electric voltage (v)

W:

Watt (kJ s−1)

\(\dot{W}\) :

Work (kW

\(\Delta\) :

Delta

\(\eta\) :

Efficiency

aq:

Aqueous

elec:

Electrical

g:

Gas

in:

Inlet

l:

Liquid

s:

Solid

sys:

System

CCC:

Carbon capture cycle

CH4 :

Methane

CO2 :

Carbon dioxide

Cu:

Copper

Cu–Cl:

Copper-chlorine cycle

CuCl:

Copper monochloride

CuCl2 :

Copper chloride

Cu2OCl2 :

Copper oxychloride

GHG:

Greenhouse gas

H2 :

Hydrogen

H2O:

Water

HCl:

Hydrochloride acid

HRSG:

Heat recovery steam generator

O2 :

Oxygen

N2 :

Nitrogen

Na:

Sodium

NH3 :

Ammonia

NaOH:

Sodium hydroxide

NaOHCO3 :

Sodium bicarbonate

Na2CO3 :

Sodium carbonate

Press:

Pressure

SMR:

Steam methane reforming

Temp:

Temperature

References

  1. Ishaq H, Dincer I, Naterer GF. Industrial heat recovery from a steel furnace for the cogeneration of electricity and hydrogen with the copper-chlorine cycle. Energy Convers Manag. 2018;171(May):384–97. https://doi.org/10.1016/j.enconman.2018.05.039.

    Article  CAS  Google Scholar 

  2. Valeh-e-Sheyda P, Rashidi H, Ghaderzadeh F. Integration of commercial CO2 capture plant with primary reformer stack of ammonia plant. J Therm Anal Calorim. 2019;135(3):1899–909. https://doi.org/10.1007/s10973-018-7215-x.

    Article  CAS  Google Scholar 

  3. Orhan MF, Dincer I, Rosen MA. Thermodynamic analysis of the copper production step in a copper-chlorine cycle for hydrogen production. Thermochim Acta. 2008;480(1–2):22–9. https://doi.org/10.1016/j.tca.2008.09.014.

    Article  CAS  Google Scholar 

  4. Environmental Protection Agency (EPA), “Nitrogen oxides (NOx), why and how they are controlled,” Epa-456/F-99–006R, no. November, p. 48, 1999, doi: EPA 456/F-99–006R.

  5. Yao X, et al. The production of hydrogen through steam reforming of bio-oil model compounds recovering waste heat from blast furnace slag: Thermodynamic study. J Therm Anal Calorim. 2018;131(3):2951–62. https://doi.org/10.1007/s10973-017-6804-4.

    Article  CAS  Google Scholar 

  6. Ratlamwala TAH, Dincer I. Energy and exergy analyses of a Cu–Cl cycle based integrated system for hydrogen production. Chem Eng Sci. 2012;84:564–73. https://doi.org/10.1016/j.ces.2012.08.052.

    Article  CAS  Google Scholar 

  7. Barelli L, Bidini G, Gallorini F, Servili S. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy. 2008;33(4):554–70. https://doi.org/10.1016/j.energy.2007.10.018.

    Article  CAS  Google Scholar 

  8. Duan W, Yu Q. Thermodynamic analysis of hydrogen-enriched syngas generation coupled with in situ CO2 capture using chemical looping gasification method. J Therm Anal Calorim. 2018;131(2):1671–80. https://doi.org/10.1007/s10973-017-6596-6.

    Article  CAS  Google Scholar 

  9. Huang CN, Shen HT. Maximum hydrogen production by using a gasifier based on the adaptive control design. Int J Hydrogen Energy. 2019;44(48):26248–60. https://doi.org/10.1016/j.ijhydene.2019.08.087.

    Article  CAS  Google Scholar 

  10. Ge Z, Guo L, Jin H. Catalytic supercritical water gasification mechanism of coal. Int J Hydrogen Energy. 2020;45(16):9504–11. https://doi.org/10.1016/j.ijhydene.2020.01.245.

    Article  CAS  Google Scholar 

  11. R. Guerrero-Lemus and J. M. Martıínez-Duart, Lecture Notes in Energy. 2012.

  12. Naterer GF, et al. Clean hydrogen production with the Cu–Cl cycle-Progress of international consortium, II: Simulations, thermochemical data and materials. Int J Hydrogen Energy. 2011;36(24):15486–501. https://doi.org/10.1016/j.ijhydene.2011.08.013.

    Article  CAS  Google Scholar 

  13. Naterer GF, Gabriel K, Wang ZL, Daggupati VN, Gravelsins R. Thermochemical hydrogen production with a copper-chlorine cycle. I: oxygen release from copper oxychloride decomposition. Int J Hydrogen Energy. 2008;33(20):5439–50. https://doi.org/10.1016/j.ijhydene.2008.05.035.

    Article  CAS  Google Scholar 

  14. Ferrandon M, Daggupati V, Wang Z, Naterer G, Trevani L. Using XANES to obtain mechanistic information for the hydrolysis of CuCl2 and the decomposition of Cu2OCl2 in the thermochemical Cu–Cl cycle for H2 production. J Therm Anal Calorim. 2015;119(2):975–82. https://doi.org/10.1007/s10973-014-4240-2.

    Article  CAS  Google Scholar 

  15. Lewis MA, Ferrandon MS, Tatterson DF, Mathias P. Evaluation of alternative thermochemical cycles - Part III further development of the Cu–Cl cycle. Int J Hydrogen Energy. 2009;34(9):4136–45. https://doi.org/10.1016/j.ijhydene.2008.09.025.

    Article  CAS  Google Scholar 

  16. Wijayanta AT, Aziz M. Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis. Energy. 2019;174:331–8. https://doi.org/10.1016/j.energy.2019.02.190.

    Article  CAS  Google Scholar 

  17. Gao W, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat Energy. 2018;3(12):1067–75. https://doi.org/10.1038/s41560-018-0268-z.

    Article  CAS  Google Scholar 

  18. Bagja F, Aziz M. ScienceDirect Integrated system of thermochemical cycle of ammonia, nitrogen production, and power generation. Int J Hydrogen Energy. 2019;44(33):17525–34. https://doi.org/10.1016/j.ijhydene.2019.05.110.

    Article  CAS  Google Scholar 

  19. Di Carlo A, Dell’Era A, Del Prete Z. 3D simulation of hydrogen production by ammonia decomposition in a catalytic membrane reactor. Int J Hydrogen Energy. 2011;36(18):11815–24. https://doi.org/10.1016/j.ijhydene.2011.06.029.

    Article  CAS  Google Scholar 

  20. Lan R, Irvine JTS, Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy. 2012;37(2):1482–94. https://doi.org/10.1016/j.ijhydene.2011.10.004.

    Article  CAS  Google Scholar 

  21. T. Chwo et al., “Pilot plant initial results for the methanation process using CO 2 from amine scrubbing at the Ł aziska power plant in Poland,” vol. 263, no. May 2019, 2020, doi: https://doi.org/10.1016/j.fuel.2019.116804.

  22. Yoo M, Han SJ, Wee JH. Carbon dioxide capture capacity of sodium hydroxide aqueous solution. J Environ Manage. 2013;114:512–9. https://doi.org/10.1016/j.jenvman.2012.10.061.

    Article  PubMed  CAS  Google Scholar 

  23. P. Authors, J. Jones, C. Barton, M. Clayton, and A. Yablonsky, “SkyMine ® Carbon Mineralization Pilot Project Final Phase 1 Topical Report,” vol. 2011, no. September, 2011.

  24. I. R. Salmón, R. Janssens, and P. Luis, “Mass and heat transfer study in osmotic membrane distillation- crystallization for CO 2 valorization as sodium carbonate,” vol. 176, pp. 173–183, 2017, doi: https://doi.org/10.1016/j.seppur.2016.12.010.

  25. Tavan Y, Hosseini SH. A novel rate of the reaction between NaOH with CO2at low temperature in spray dryer. Petroleum. 2017;3(1):51–5. https://doi.org/10.1016/j.petlm.2016.11.006.

    Article  Google Scholar 

  26. Berg RL, Vanderzee CE. Thermodynamics of carbon dioxide and carbonic acid: (a) the standard enthalpies of solution of Na2CO3(s), NaHCO3(s), and CO2(g) in water at 298.15 K; (b) the standard enthalpies of formation. J Chem Thermodyn. 1978;10(12):1113–36. https://doi.org/10.1016/0021-9614(78)90029-0.

    Article  CAS  Google Scholar 

  27. Ishaq H, Dincer I. Exergy analysis and performance evaluation of a newly developed integrated energy system for quenchable generation. Energy. 2019;179:1191–204. https://doi.org/10.1016/j.energy.2019.05.050.

    Article  CAS  Google Scholar 

  28. Ishaq H, Dincer I. Analysis and optimization for energy, cost and carbon emission of a solar driven steam-autothermal hybrid methane reforming for hydrogen, ammonia and power production. J Clean Prod. 2019;234:242–57. https://doi.org/10.1016/j.jclepro.2019.06.027.

    Article  CAS  Google Scholar 

  29. Cai W, et al. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy. 2020;201:117480. https://doi.org/10.1016/j.energy.2020.117480.

    Article  Google Scholar 

  30. J. Oh, D. Jung, S. Hwan, K. Roh, S. Ga, and J. H. Lee, “Design , simulation and feasibility study of a combined CO 2 mineralization and brackish water desalination process,” J. CO2 Util., vol. 34, no. July, pp. 446–464, 2019, doi: https://doi.org/10.1016/j.jcou.2019.07.004.

  31. Ishaq H, Dincer I. A comparative evaluation of three Cu–Cl cycles for hydrogen production. Int J Hydrogen Energy. 2019;44(16):7958–68. https://doi.org/10.1016/j.ijhydene.2019.01.249.

    Article  CAS  Google Scholar 

  32. Ishaq H, Dincer I. Investigation of an integrated system with industrial thermal management options for carbon emission reduction and hydrogen and ammonia production. Int J Hydrogen Energy. 2019;44(26):12971–82. https://doi.org/10.1016/j.ijhydene.2019.03.067.

    Article  CAS  Google Scholar 

  33. A. Plus and U. Guide, “Aspen Plus ®.”

  34. Nikulshina V, Ayesa N, Gálvez ME, Steinfeld A. Feasibility of Na-based thermochemical cycles for the capture of CO2 from air-Thermodynamic and thermogravimetric analyses. Chem Eng J. 2008;140(1–3):62–70. https://doi.org/10.1016/j.cej.2007.09.007.

    Article  CAS  Google Scholar 

  35. Y. Liang, “Carbon Dioxide Capture From Flue Gas Using Regenerable Sodium-Based Sorbents,” pp. 1–137, 2003.

  36. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ. Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels. 2004;18(2):569–75. https://doi.org/10.1021/ef030158f.

    Article  CAS  Google Scholar 

  37. Xie W, Chen X, Ma J, Liu D, Cai T, Wu Y. Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents. Appl Energy. 2019. https://doi.org/10.1016/j.apenergy.2019.113434.

    Article  Google Scholar 

  38. Zamfirescu C, Dincer I, Naterer GF. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles. Int J Hydrogen Energy. 2010;35(10):4839–52. https://doi.org/10.1016/j.ijhydene.2009.08.101.

    Article  CAS  Google Scholar 

  39. Dinali MN, Dincer I. Development of a new trigenerational integrated system for dimethyl-ether, electricity and fresh water production. Energy Convers Manag. 2019;185(November 2018):850–65. https://doi.org/10.1016/j.enconman.2019.01.106.

    Article  CAS  Google Scholar 

  40. Naterer GF, et al. Clean hydrogen production with the Cu–Cl cycle-Progress of international consortium, I: experimental unit operations. Int J Hydrogen Energy. 2011;36(24):15472–85. https://doi.org/10.1016/j.ijhydene.2011.08.012.

    Article  CAS  Google Scholar 

  41. Baltrusaitis J. Sustainable ammonia production, vol. 5. Washington, DC: ACS Publications; 2017.

    Google Scholar 

  42. Lecker B, Illi L, Lemmer A, Oechsner H. Biological hydrogen methanation—a review. Bioresour Technol. 2017;245(August):1220–8. https://doi.org/10.1016/j.biortech.2017.08.176.

    Article  PubMed  CAS  Google Scholar 

  43. Baraj E, Vagaský S, Hlinčík T, Ciahotný K, Tekáč V. Reaction mechanisms of carbon dioxide methanation. Chem Pap. 2016;70(4):395–403. https://doi.org/10.1515/chempap-2015-0216.

    Article  CAS  Google Scholar 

  44. Naterer GF, et al. Progress of international hydrogen production network for the thermochemical Cu–Cl cycle. Int J Hydrogen Energy. 2013;38(2):740–59. https://doi.org/10.1016/j.ijhydene.2012.10.023.

    Article  CAS  Google Scholar 

  45. Avsec J, Wang Z, Naterer GF. Thermodynamic and transport properties of fluids and solids in a Cu–Cl solar hydrogen cycle. J Therm Anal Calorim. 2017;127(1):961–7. https://doi.org/10.1007/s10973-016-5875-y.

    Article  CAS  Google Scholar 

  46. Ishaq H, Dincer I, Naterer GF. New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production. Appl Therm Eng. 2018;142:767–78. https://doi.org/10.1016/j.applthermaleng.2018.07.019.

    Article  CAS  Google Scholar 

  47. Wang W, Herreros JM, Tsolakis A, York APE. Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. Int J Hydrogen Energy. 2013;38(23):9907–17. https://doi.org/10.1016/j.ijhydene.2013.05.144.

    Article  CAS  Google Scholar 

  48. Chaves IDG, López JRG, Zapata JLG, Robayo AL, Niño GR. Process analysis and simulation in chemical engineering. Process Anal Simul Chem Eng. 2015. https://doi.org/10.1007/978-3-319-14812-0.

    Article  Google Scholar 

  49. Zhang G, Shi Y, Maleki A, Rosen MA. Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew Energy. 2020;156:1203–14. https://doi.org/10.1016/j.renene.2020.04.010.

    Article  Google Scholar 

  50. Maleki A, Nazari MA, Pourfayaz F. Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Rep. 2020. https://doi.org/10.1016/j.egyr.2020.03.014.

    Article  Google Scholar 

  51. Ishaq H, Dincer I, Naterer GF. Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production. Energy. 2019;172:1243–53. https://doi.org/10.1016/j.energy.2019.02.026.

    Article  CAS  Google Scholar 

  52. Daggupati VN, Naterer GF, Gabriel KS, Gravelsins RJ, Wang ZL. Equilibrium conversion in Cu–Cl cycle multiphase processes of hydrogen production. Thermochim Acta. 2009;496(1–2):117–23. https://doi.org/10.1016/j.tca.2009.07.009.

    Article  CAS  Google Scholar 

  53. Science, E. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mehrpooya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izanloo, M., Mehrpooya, M. Investigation of a hybrid thermochemical Cu–Cl cycle, carbon capturing, and ammonia production process. J Therm Anal Calorim 144, 1907–1923 (2021). https://doi.org/10.1007/s10973-021-10768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10768-5

Keywords

Navigation