Skip to main content
Log in

Thermo-economic multi-objective optimization of an innovative Rankine–organic Rankine dual-loop system integrated with a gas engine for higher energy/exergy efficiency and lower payback period

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An innovative dual-loop heat recovery and power generation system is proposed here to increase heat recovery from the gas engine (GE) exhaust and jacket cooling water and to augment the system power output and thermal efficiency. As this proposed dual-loop heat recovery system is not studied in existing references, for comparison purpose, 18 existing single- and dual-loop systems in the literature as well as one proposed dual-loop system with six working fluids in topping and six working fluids in bottoming loop (36 cases) are investigated here (54 cases in sum). These systems are modeled in energy, exergy and economic aspects and are optimized by selecting ten design variables and two objective functions (payback period and exergy efficiency) by the use of genetic algorithm. Results show that with water as working fluid for topping loop (Rankine cycle or RC loop) and R141b for bottoming loop (organic Rankine cycle or ORC loop), which are selected in modeling and optimization procedures, the proposed above RC–ORC system has advantages among 53 other studied single- and dual-loop cases. These advantages are higher power output, thermal efficiency, exergy efficiency, annual profit as well as lower investment cost per unit of power output ($ kW−1) and payback period. It is observed that the proposed configuration of RC–ORC (with water–R141b as working fluids), which is integrated with 2 MW gas engine (as an example) generated 617 kW power output with 24% thermal efficiency, 55% exergy efficiency, 1280 $ kW−1 investment cost per unit of power output and about 3-year payback period. Furthermore, the overall thermal efficiency of integrated system (GE–RC–ORC) was about 67%. Finally, RC–ORC power output, exergy efficiency, thermal efficiency and payback period are also obtained for 1, 2 and 3 MW gas engines at various partial loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Heat transfer surface area (m2)

\(\mathrm{AP}\) :

Annual profit ($ year−1)

\(C_{{{\text{CO}}_{2} }}\) :

CO2 penalty cost per kg ($ kg−1)

\(C_{{\text{elec,B}}}\) :

Electricity consumption price ($ kWh−1)

\(C_{{\text{elec,s}}}\) :

Electricity selling price ($ kWh−1)

\(C_{{\text{f}}}\) :

Fuel cost (S m−3)

\(C_{{\text{in,an}}}\) :

Annual investment cost ($ year−1)

\(C_{{{\text{inv}}}}\) :

Investment cost ($)

\(C_{{\text{m}}}\) :

CO2 production per (kg kWh−1)

\(C_{{\text{P}}}\) :

Specific heat capacity (kJ kg−1 K−1)

\(C_{{{\text{Penalty}}}}\) :

CO2 penalty cost ($)

\({\text{CRF}}\) :

Capital recovery factor

\(d\) :

Tube diameter (m)

\(\dot{E}\) :

Exergy rate (kW)

\(F\) :

Logarithmic mean temperature difference correction factor

\(f_{{\text{g}}}\) :

Friction factor

\(G\) :

Mass velocity (kg s−1 m−2)

\(H\) :

Annual working time (h)

\(h\) :

Specific enthalpy (kJ kg−1)

\(I_{{{\text{e}},{\text{s}}}}\) :

Income from electricity selling ($)

\(i\) :

Interest rate (%)

\(K_{{\text{m}}}\) :

Pipe material thermal conductivity (W m−1  K−1)

\({\text{LHV}}\) :

Lower heating value (Kcal m−3)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\({\text{Nu}}\) :

Nusselt number

\(n\) :

System lifetime (year)

\(P\) :

Pressure (bar)

\({\text{PBP}}\) :

Payback period (year)

\({\text{PL}}\) :

Partial load (%)

\({\text{Pr}}\) :

Prandtl number

\(Q\) :

Volumetric flow rate (m3 s−1)

\(\dot{Q}\) :

Heat transfer rate (kW)

\({\text{Re}}\) :

Reynolds number

\(s\) :

Specific entropy (kJ kg−1)

\(T\) :

Temperature (°C)

\(U\) :

Overall heat transfer coefficient (Wm−2 K−1)

\({\text{V}}\) :

Water velocity (m s−1)

\(\dot{W}\) :

Work produced/consumed rate (kW)

\(x\) :

Steam quality

α :

Heat transfer coefficient (Wm−2 K−1)

\(\eta_{{{\text{thermal}}}}\) :

Thermal efficiency (%)

\(\eta_{{{\text{ex}}}}\) :

Exergy efficiency (%)

\(\gamma\) :

Isobaric to isometric specific heat capacity ratio

\(\gamma \left( {i,n} \right)\) :

Sinking fund factor

\(\Delta p_{{\text{g}}}\) :

Gas side pressure drop (kPa)

\(\rho\) :

Density (kg m−3)

μ :

Dynamic viscosity (Pa s)

\({\text{APTD}}\) :

Approach point temperature difference

\({\text{amb}}\) :

Ambient

\({\text{atm}}\) :

Atmosphere

\({\text{Cond}}\) :

Condenser

\({\text{CHP}}\) :

Combined heat and power

\({\text{Des}}\) :

Exergy destruction

\({\text{DOS}}\) :

Degree of superheat

\({\text{Eva}}\) :

Evaporator

\({\text{exp}}\) :

Expander

f:

Fuel

\({\text{GE}}\) :

Gas engine

\({\text{GWP}}\) :

Global warming potential

g:

Gas

HRSG:

Heat recovery steam generator

i :

Internal

\({\text{JCW}}\) :

Jacket cooling water

\({\text{ma}}\) :

Maintenance

\({\text{NTU}}\) :

Number of transfer units

\({\text{ODP}}\) :

Ozone depletion potential

\({\text{OP}}\) :

Operational

\({\text{ORC}}\) :

Organic Rankine cycle

\(o\) :

Outer

\({\text{PPTD}}\) :

Pinch point temperature difference

\({\text{RC}}\) :

Rankine cycle

\({\text{ST}}\) :

Steam turbine

\({\text{SV}}\) :

Salvage value

\({\text{Sat}}\) :

Saturation state

s:

Isentropic process

\({\text{st}}\) :

Steam

t:

Turbine

\({\text{Wa}}\) :

Water

\({\text{Wf}}\) :

Working fluid

References

  1. Catalog of CHP technologies. U.S. Environmental Protection Agency, Combined Heat and Power Agency partnership, Washington, DC, United States; 2014.

  2. Song J, Gu CW. Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery. Appl Energy. 2015;156:280–9.

    CAS  Google Scholar 

  3. Yang F, Cho H, Zhang H, Zhang J. Thermo-economic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery. Appl Energy. 2017;205:1100–18.

    CAS  Google Scholar 

  4. Yang FB, Zhang HG, Yu ZB, Wang EH, Meng FX, Liu HD, Wang JF. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery. Energy. 2017;118:753–75.

    CAS  Google Scholar 

  5. Panesar AS. An innovative organic Rankine cycle system for integrated cooling and heat recovery. Appl Energy. 2016;186:396–407.

    Google Scholar 

  6. Peris B, Esbrí JN, Molés F. Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery. Appl Therm Eng. 2013;61:364–71.

    CAS  Google Scholar 

  7. Shu G, Wang X, Tian H. Theoretical analysis and comparison of Rankine cycle and different organic Rankine cycles as waste heat recovery system for a large gaseous fuel internal combustion engine. Appl Therm Eng. 2016;108:525–37.

    CAS  Google Scholar 

  8. Mehrdad S, Dadsetani R, Amiriyoon A, Leon AS, Safaei MR, Goodarzi M. Exergo-economic optimization of organic Rankine cycle for saving of thermal energy in a sample power plant by using of strength Pareto evolutionary algorithm II. Processes. 2020. https://doi.org/10.3390/pr8030264.

    Article  Google Scholar 

  9. Song J, Gu CW. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery. Energy Convers Manage. 2015;105:995–1005.

    Google Scholar 

  10. Apostol V, Pop H, Dobrovicescu A, Prisecaru T, Alexandru A, Prisecaru M. Thermodynamic analysis of ORC configurations used for WHR from a turbocharged diesel engine. Proc Eng. 2015;100:549–58.

    CAS  Google Scholar 

  11. Xia XX, Wang ZQ, Zhou NJ, Hu YH, Zhang JP, Chen Y. Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115028.

    Article  Google Scholar 

  12. Zhou Y, Li Sh, Sun L, Zhao Sh, AshrafTalesh SS. Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures. Energy. 2019. https://doi.org/10.1016/j.energy.2019.116785.

    Article  Google Scholar 

  13. Sanaye S, Khakpay N. Thermo-economic multi-objective optimization of an innovative cascaded organic Rankine cycle heat recovery and power generation system integrated with gas engine and ice thermal energy storage. J Energy Storage. 2020. https://doi.org/10.1016/j.est.2020.101697.

    Article  Google Scholar 

  14. Shu G, Li X, Tian H, Liang X, Wei H, Wang X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Appl Energy. 2014;119:204–17.

    CAS  Google Scholar 

  15. Toffolo A, Lazzaretto A, Manente G, Paci M. A multi-criteria approach for the optimal selection of working fluid and design parameters in organic Rankine cycle systems. Appl Energy. 2014;121:219–32.

    CAS  Google Scholar 

  16. Gimelli A, Luongo A, Muccillo M. Efficiency and cost optimization of a regenerative organic Rankine cycle power plant through the multi-objective approach. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.12.009.

    Article  Google Scholar 

  17. Wang YZ, Zhao J, Wang Y, An QS. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle. Appl Thermal Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.10.075.

    Article  Google Scholar 

  18. Ameri M, Jorjani M. Performance assessment and multi-objective optimization of an integrated organic Rankine cycle and multi-effect desalination system. Desalination. 2016;392:34–45.

    CAS  Google Scholar 

  19. Wang J, Yan Z, Wang M, Li M, Dai Y. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers Manage. 2013;71:146–58.

    Google Scholar 

  20. Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimization of regenerative organic Rankine cycle for waste heat recovery applications. Energy Convers Manage. 2014;87:107–18.

    CAS  Google Scholar 

  21. Feng Y, Zhang Y, Li B, Yang J, Shi Y. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermo-economic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC). Energy Convers Manage. 2015;96:58–71.

    CAS  Google Scholar 

  22. Fergani Z, Touil D, Morosuk T. Multi-criteria exergy based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry. Energy Convers Manage. 2016;112:81–90.

    CAS  Google Scholar 

  23. Astolfi M, Romano MC, Bombarda P, Macchi E. Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources Part B: techno-economic optimization. Energy. 2014;66:435–46.

    CAS  Google Scholar 

  24. Wang XR, Dai YP. Exergo-economic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study. Appl Energy. 2016;170:193–207.

    CAS  Google Scholar 

  25. Imran M, Usman M, Park BS, Yang YM. Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications. Energy. 2016;102:473–90.

    CAS  Google Scholar 

  26. Kazemi N, Samadi F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources. Energy Convers Manage. 2016;121:391–401.

    CAS  Google Scholar 

  27. Khosravi H, Salehi GR, TorabiAzad M. Design of structure and optimization of organic Rankine cycle for heat recovery from gas turbine: the use of 4E, advanced exergy and advanced exergoeconomic analysis. Appl Thermal Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.09.128.

    Article  Google Scholar 

  28. Emadi MA, Chitgar N, Oyewunmi OA, Markides CN. Working-fluid selection and thermo-economic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Appl Energy. 2020;261:1–20.

    Google Scholar 

  29. Sun Q, Wang Y, Cheng Z, Wang J, Zhao P, Dai Y. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source. Renew Energy. 2018. https://doi.org/10.1016/j.renene.2018.11.093.

    Article  Google Scholar 

  30. Keshavarzzadeh AH, Ahmadi P, Safaei MR. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. Int J Hydrogen Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.06.127.

    Article  Google Scholar 

  31. Sanaye S, Ghaffari A. Modeling, multi-objective optimization and comparison of fire and water tube heat recovery steam generators for gas engine cogeneration plants. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10522-3.

    Article  Google Scholar 

  32. Ghaffari A, Ahmadi R, Eyvazkhani M. Modeling and optimization of finless and finned tube heat recovery steam generators for cogeneration plants. Eng Rep. 2020. https://doi.org/10.1002/eng2.12262.

    Article  Google Scholar 

  33. Wang JF, Yan ZQ, Wang M, Ma SL, Dai YP. Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source. Energy. 2013;49:356–65.

    Google Scholar 

  34. Ayachi F, Ksayer EB, Zoughaib A. ORC optimization for medium grade heat recovery. Energy. 2014;68:47–56.

    CAS  Google Scholar 

  35. Sadeghi M, Nemati A, Ghavimi A, Yari M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy. 2016;109:791–802.

    CAS  Google Scholar 

  36. Imran M, Haglind F, Lemort V, Meroni A. Optimization of organic Rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system. Energy. 2019;180:229–41.

    CAS  Google Scholar 

  37. Van Kleef LMT, Oyewunmi OA, Markides CN. Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer aided molecular design techniques. Appl Energy. 2019;251:1–21.

    Google Scholar 

  38. Fang Y, Yang F, Zhang H. Comparative analysis and multi-objective optimization of organic Rankine cycle (ORC) using pure working fluids and their zeotropic mixtures for diesel engine waste heat recovery. Appl Therm Eng. 2019;157:1–15.

    Google Scholar 

  39. Li J, Mohammadi A, Maleki A. Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle, and parabolic trough collector. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08855-9.

    Article  Google Scholar 

  40. Bademlioglu AH, Canbolat AS, Kaynakli O. Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. Renew Sustain Energy Rev. 2020;117:1–13.

    Google Scholar 

  41. Abam FI, Ekwe EB, Effiom SO, Ndukwu MC, Briggs TA, Kadurumba CH. Optimum exergetic performance parameters and thermo-sustainability indicators of low-temperature modified organic Rankine cycles (ORCs). Sustainable Energy Technol Assess. 2018;30:91–104.

    Google Scholar 

  42. Amiri Rad E, Mohammadi S, Tayyeban E. Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures. Energy. 2019. https://doi.org/10.1016/j.energy.2019.116856.

    Article  Google Scholar 

  43. Sadeghi S, Maghsoudi P, Shabani B, Haghshenas Gorgani H, Shabani N. Performance analysis and multi-objective optimization of an organic Rankine cycle with binary zeotropic working fluid employing modified artificial bee colony algorithm. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7801-y.

    Article  Google Scholar 

  44. Ahmadi B, Golneshan AA, Arasteh H, Karimipour A, Vu BQ. Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09088-6.

    Article  Google Scholar 

  45. Maleki A, Thao Thi Ngo P, Irandoost Shahrestani M. Energy and exergy analysis of a PV module cooled by an active cooling approach. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09916-0.

    Article  Google Scholar 

  46. Toghyani S, Afshari E, Baniasadi E, Shadloo MS. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system. Renewable Energy. 2019. https://doi.org/10.1016/j.renene.2019.04.073.

    Article  Google Scholar 

  47. Rostami S, Sepehrirad M, Dezfulizadeh A, Kadhim Hussein A, Shahsavar Goldanlou A, Shadloo MS. Exergy optimization of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nanofluid flow: a study for thermal management. Water. 2020. https://doi.org/10.3390/w12082294.

    Article  Google Scholar 

  48. Masum BM, Masjuki HH, Kalam MA, Palash SM, Habibullah M. Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine. J Clean Prod. 2014. https://doi.org/10.1016/j.jclepro.2014.08.032.

    Article  Google Scholar 

  49. Pierobon L, Benato A, Scolari E, Haglind F, Stoppato A. Waste heat recovery technologies for offshore platforms. Appl Energy. 2014;136:228–41.

    Google Scholar 

  50. Feng YQ, Zhang YN, Li BX, Yang JF, Yang S. Sensitivity analysis and thermo-economic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery. Energy. 2015;82:664–7.

    CAS  Google Scholar 

  51. Maleki A, Nazari MA, Pourfayaz F. Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Rep. 2020. https://doi.org/10.1016/j.egyr.2020.03.014.

    Article  Google Scholar 

  52. Cai W, Li X, Maleki A, Pourfayaz F, Rosen MA, Nazari MA, Bui DT. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy. 2020. https://doi.org/10.1016/j.energy.2020.117480.

    Article  Google Scholar 

  53. Zhang G, Shi Y, Maleki A, Rosen MA. Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2020.04.010.

    Article  Google Scholar 

  54. Li Z, Sarafraz MM, Mazinani A, Moria H, Tlili I, Alkanhal TA, Goodarzi M, Safaei MR. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Convers Manage. 2020. https://doi.org/10.1016/j.enconman.2020.113230.

    Article  Google Scholar 

  55. Toghyani S, Fakhradini S, Afshar E, Baniasadi E, Abdollahzadeh Jamalabadi MY, Safdari SM. Optimization of operating parameters of a polymer exchange membrane electrolyzer. Int J Hydrogen Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.01.186.

    Article  Google Scholar 

  56. Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization. New York: Wiley; 1996.

    Google Scholar 

  57. Roshenow W, Hartnett JP. Handbook of heat transfer. New York: McGraw-Hill; 1972. p. 13–56.

    Google Scholar 

  58. Kakac S, Liu H, Pramuanjaroenkij A. Heat exchangers selection, rating and thermal design. 3rd ed. Boca Raton, Florida: CRC Press; 2012.

    Google Scholar 

  59. Bahmani MH, Akbari OA, Alrashed AAAA, Sheikhzadeh G, Zarringhalam M, Ahmadi Sheikh Shabani G, Goodarzi M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2017. https://doi.org/10.1016/j.apt.2017.11.013.

    Article  Google Scholar 

  60. Ganapathy V. Industrial boilers and heat recovery steam generators: Design, applications and calculations. 3rd ed. New York, Basel: Marcel Dekker Inc; 2003.

    Google Scholar 

  61. Shahsavar A, Bakhshizadeh MA, Arici M, Afrand M, Rostami S. Numerical study of the possibility of improving the hydrothermal performance of an elliptical double-pipe heat exchanger through the simultaneous use of twisted tubes and non-Newtonian nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10201-3.

    Article  Google Scholar 

  62. Xia J, Wang J, Lou J, Zhao P, Dai Y. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery. Energy Convers Manage. 2016;128:303–16.

    Google Scholar 

  63. Shu G, Yu G, Tian H, Wei H, Liang X. A multi-approach evaluation system (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization. Appl Energy. 2014;132:325–38.

    Google Scholar 

  64. Ma J, Liu L, Zhu T, Zhang T. Cascade utilization of exhaust gas and jacket water waste heat from an internal combustion engine by a single loop organic Rankine cycle system. Appl Therm Eng. 2016;107:218–26.

    CAS  Google Scholar 

  65. Mehdizadeh-Fard M, Pourfayaz F, Maleki A. Exergy analysis of multiple heat exchanger networks: an approach based on the irreversibility distribution ratio. Energy Rep. 2021. https://doi.org/10.1016/j.egyr.2020.11.166.

    Article  Google Scholar 

  66. Nazari N, Heidarnejad P, Porkhial S. Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application. Energy Convers Manage. 2016;127:366–79.

    CAS  Google Scholar 

  67. Neto R, Sotomonte C, Coronado CJR, Nascimento MAR. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers Manag. 2016;129:168–79.

    CAS  Google Scholar 

  68. Humpherys KK, Kattell S. Basic cost engineering. New York: MarcelDekker; 1981.

    Google Scholar 

  69. Macchi E, Astolfi M. Organic Rankine cycle power systems, technologies and applications. Woodhead Publishing Series in Energy; 2017.

    Google Scholar 

  70. Liu X, Wei M, Yang L, Wang X. Thermo-economic analysis and optimization selection of ORC system configurations for low temperature binary-cycle geothermal plant. Appl Therm Eng. 2017;125:153–64.

    CAS  Google Scholar 

  71. https://www.cat.com/en_US/products/new/power-systems/industrial/gas-engines.html

  72. Vaja I, Gambarotta A. Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy. 2010;35:1084–93.

    CAS  Google Scholar 

  73. Deb K, Agrawal S, Pratap A, Meyarivan TA. fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect Notes Comput Sci. 2000;19:849–58.

    Google Scholar 

  74. Sanaye S, Shirazi A. Four E analysis and multi-objective optimization of an ice thermal energy storage for air-conditioning applications. Int J Refrig. 2013;36:828841.

    Google Scholar 

  75. Wang X, Shu G, Tian H, Feng W, Liu P, Li X. Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery. Energy Convers Manage. 2018;174:504–15.

    CAS  Google Scholar 

  76. https://www.mwm.net/mwm-kwk-bhkw/gasmotoren-stromaggregate/gasmotor-tcg-2032/

  77. Nami H, Mahmoudi SMS, Nemati A. Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2). Appl Thermal Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.08.197.

    Article  Google Scholar 

  78. Franco A, Giannini N. A general method for the optimum design of heat recovery steam generators. Energy. 2006;31:3342–61.

    CAS  Google Scholar 

  79. Amicabile S, Lee JI, Kum D. A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy duty diesel engines. Appl Therm Eng. 2015;87:574–85.

    CAS  Google Scholar 

  80. Macián V, Serrano JR, Dolz V, Sánchez J. Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Appl Energy. 2013;104:758–71.

    Google Scholar 

  81. Pili R, Romagnoli A, Kamossa K, Schuster A, Spliethoff H, Wieland C. Organic Rankine Cycles (ORC) for mobile applications—economic feasibility in different transportation sectors. Appl Energy. 2017. https://doi.org/10.1016/j.apenergy.2017.04.056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr Sanaye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaye, S., Ghaffari, A. Thermo-economic multi-objective optimization of an innovative Rankine–organic Rankine dual-loop system integrated with a gas engine for higher energy/exergy efficiency and lower payback period. J Therm Anal Calorim 144, 1883–1905 (2021). https://doi.org/10.1007/s10973-021-10753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10753-y

Keywords

Navigation