Skip to main content
Log in

Effect of coke deposition over microporous and hierarchical ZSM-23 zeolite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of deactivation by coke deposition after the n-heptane cracking reaction were evaluated on crystallinity, acidity and activation energies for the coke thermal oxidation process in microporous and hierarchical ZSM-23 zeolites. The fresh and coked catalysts were characterized by X-ray diffraction, temperature-programmed desorption of ammonia and thermogravimetric analysis. The Flynn–Wall–Ozawa and Vyazovkin kinetic models were used to determine the activation energy of the catalyst regeneration process, using integral dynamic curves from thermogravimetric analysis data obtained with different heating rates. The generation of micro-/mesoporous structures provided a beneficial effect by inhibiting the loss of crystallinity and preserving a certain degree of acidity after catalyst deactivation. The hierarchical ZSM-23 zeolites showed lower deposited coke amounts and activation energy values for the coke thermal oxidation process, providing greater stability, activity and lower energy level required for regeneration in comparison with the microporous zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Weitkamp J. Zeolites and catalysis. Solid State Ion. 2000;131:175–88.

    Article  CAS  Google Scholar 

  2. Martinez C, Corma A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev. 2011;255:1558–80.

    Article  CAS  Google Scholar 

  3. Dusselier M, Davis ME. Small-pore zeolites: synthesis and catalysis. Chem Rev. 2018;118:5265–329.

    Article  CAS  PubMed  Google Scholar 

  4. Molino A, Holzinger J, Łukaszuk KA, Rojo-Gama D, Gunnæs AE, Skibsted J, Lundegaard LF, Svelle S, Beato P, Bordiga S, Lilleruda KP. Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. Catal Sci Technol. 2019;23:6782–92.

    Article  Google Scholar 

  5. Chen Y, Li C, Chen X, Liu Y, Tsang CW, Liang C. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane. Ind Eng Chem Res. 2018;57:13721–30.

    Article  CAS  Google Scholar 

  6. Chester AW, Garwood WE. Catalytic process for manufacture of low pour lubricating oils. US Patent 4414097.

  7. Debecker D, Colbeau-Justin F, Sanchez C, Chaumonnot A. Method of olefin metathesis using a catalyst based on hierarchised porosity spherical material comprising oxide metallic particles pitched in a matrix comprising silicon oxide. FR Patent 3007029.

  8. Tiitta M, Harlin E, Makkonen J, Kumar N, Murzin DY, Salmi T. Zeolite catalyst for skeletal isomerisation of olefins. US Patent 20060275207.

  9. Wang B, Gao Q, Gao J, Ji D, Wang X, Suo J. Synthesis, characterization and catalytic C4 alkene cracking properties of zeolite ZSM-23. Appl Catal A-Gen. 2004;274:167–72.

    Article  CAS  Google Scholar 

  10. Muraza O, Bakare IA, Tago T, Konno H, Taniguchi T, Al-Amer AM, Yamani ZH, Nakasaka Y, Masuda T. Selective catalytic cracking of n-hexane to propylene over hierarchical MTT zeolite. Fuel. 2014;135:105–11.

    Article  CAS  Google Scholar 

  11. Bendiksen M, Tangstad E, Myrstad T. A comparison of laboratory deactivation methods for FCC catalysts. Appl Catal A-Gen. 1995;129:21–31.

    Article  CAS  Google Scholar 

  12. Muraza O, Sanhoob MA, Siddiqui MAB. Fabrication of desilicated MTW zeolite and its application in catalytic cracking of n-heptane. Adv Powder Technol. 2016;27:372–8.

    Article  CAS  Google Scholar 

  13. Zhang X, Cheng D, Chen F, Zhan X. The role of external acidity of hierarchical ZSM-5 zeolites in n-heptane catalytic cracking. ChemCatChem. 2018;10:2655–63.

    Article  CAS  Google Scholar 

  14. Guisnet M, Magnoux P. Organic chemistry of coke formation. Appl Catal A-Gen. 2001;212:83–96.

    Article  CAS  Google Scholar 

  15. Fouche V, Magnoux P, Coking GM. Ageing and regeneration of zeolites: XI. Coke formation and deactivation of Pt-ultrastable zeolite HY and PtH-mordenite catalysts during hydrogenation of benzene. Appl Catal. 1990;58:189–98.

    Article  CAS  Google Scholar 

  16. Guisnet M. Regeneration of coked zeolite catalysts. In: Guisnet M, Ribeiro FR, editors. Deactivation and regeneration of zeolite catalysts. London: Imperial College Press; 2011. p. 217–31.

    Chapter  Google Scholar 

  17. Gulsnet M, Magnoux P. Deactivation by coking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration. Catal Today 1997;36:477–83.

  18. Bai R, Song Y, Li Y, Yu J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 2019;1:601–11.

    Article  CAS  Google Scholar 

  19. Holmes SM, Garforth A, Maunders B, Dwyer J. A solvent extraction method to study the location and concentration of coke formed on zeolite catalysts. Appl Catal A-Gen. 1997;151:355–72.

    Article  CAS  Google Scholar 

  20. Bartholomew CH, Argyle MD. Advances in catalyst deactivation and regeneration. Catalysts. 2015;5:949–54.

    Article  CAS  Google Scholar 

  21. Biswas J, Maxwell IE. Recent process- and catalyst-related developments in fluid catalytic cracking. Appl Catal. 1990;63:197–258.

    Article  CAS  Google Scholar 

  22. Karge HG. Coke formation on zeolites. Stud Surf Sci Catal. 1991;58:531–70.

    Article  CAS  Google Scholar 

  23. Gayubo AG, Arandes JM, Aguayo AT, Olazar M, Bilbao J. Calculation of the kinetics of catalyst regeneration by burning coke following a temperature ramp. Chem Eng J Bioch Eng. 1994;54:35–40.

    Article  CAS  Google Scholar 

  24. Fernandes VJ Jr, Araújo AS, Fernandes GJT. Thermal analysis applied to solid catalysts acidity, activity and regeneration. J Therm Anal Cal. 1999;56:275–85.

    Article  CAS  Google Scholar 

  25. Bayraktar O, Kugler EL. Coke content of spent commercial fluid catalytic cracking (FCC) catalysts. J Therm Anal Cal. 2002;71:867–74.

    Article  Google Scholar 

  26. Vallová S, Slovák V, Leško J. The influence of selected oxides and carbonates on thermal oxidation of coke. J Therm Anal Cal. 2003;71:875–81.

    Article  Google Scholar 

  27. Goetze J, Meirer F, Yarulina I, Gascon J, Kapteijn F, Ruiz-Martínez J, Weckhuysen BM. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV−vis spectroscopy. ACS Catal. 2017;7:4033–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devaraj A, Vijayakumar M, Bao J, Guo MF, Derewinski MA, Xu Z, Gray MJ, Prodinger S, Ramasamy KK. Discerning the location and nature of coke deposition from surface to bulk of spent zeolite catalysts. Sci Rep. 2016;6:37586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang T, Chen M, Liu X, Zhang Z-G, Xu Y. Distinguishing external and internal coke depositions on micron-sized HZSM-5 via catalyst-assisted temperature-programmed oxidation. New J Chem. 2019;43:13938–46.

    Article  CAS  Google Scholar 

  30. Silva AOS, Souza MJB, Aquino JMFB, Fernandes VJ Jr, Araújo AS. Coke removal of the HZSM-12 zeolite with different silica/alumina ratio. J Therm Anal Calorim. 2004;75:699–704.

    Article  CAS  Google Scholar 

  31. Ozawa TA. New method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  32. Ozawa TA. A new method of quantitative differential thermal analysis. B Chem Soc Jpn. 1966;39:2071–85.

    Article  CAS  Google Scholar 

  33. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:487–523.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Lesnicovich A. Practical application of isoconversional methods. Thermochim Acta. 1992;203:177–85.

    Article  CAS  Google Scholar 

  35. Vyazovkin S. Evaluation of activation energy of thermally stimulated solidstate reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  36. Silva BJB, Sousa LV, Sarmento LRA, Carvalho RP, Quintela PHL, Pacheco JGA, Fréty R, Silva AOS. Effect of desilication on the textural properties, acidity and catalytic activity of zeolite ZSM-23 synthesized with different structure-directing agents. Micropor Mesopor Mater. 2019;290:109647.

    Article  CAS  Google Scholar 

  37. Young Kang N, Ihl Woo S, Jin Lee Y, Bae J, Choon Choi W, Park Y-K. Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking. J Mater Sci. 2016;51:3735–49.

    Article  Google Scholar 

  38. Muraza O, Bakare IA, Tago T, Konno H, Adedigba A, Al-Amer AM, Yamani ZH, Masuda T. Controlled and rapid growth of MTT zeolite crystals with low-aspect-ratio in a microwave reactor. Chem Eng. 2013;226:367–76.

    Article  CAS  Google Scholar 

  39. Möller K, Bein T. Crystallization and porosity of ZSM-23. Micropor Mesopor Mater. 2011;143:253–62.

    Article  Google Scholar 

  40. Alvarez AG, Viturro H, Bonetto RD. Structural changes on deactivation of ZSM-5. A study by X-ray powder diffraction. Mater Chem Phys 1992;32:135−40.

  41. Rojo-Gama D, Mentel L, Kalantzopoulos GN, Pappas DK, Dovgaliuk I, Olsbye U, Lillerud KP, Beato P, Lundegaard LF, Wragg DS, Svelle S. Deactivation of zeolite catalyst H-ZSM-5 during conversion of methanol to gasoline: operando time- and space-resolved X-ray diffraction. J Phys Chem Lett. 2018;9:1324–8.

    Article  CAS  PubMed  Google Scholar 

  42. Campo P, Slawinski WA, Henry R, Erichsen MW, Svelle S, Beato P, Wragg D, Olsbye U. Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions. Surf Sci. 2018;648:141–9.

    Article  Google Scholar 

  43. Wragg DS, Akporiaye D, Fjellvag H. Direct observation of catalyst behaviour under real working conditions with X-ray diffraction: comparing sapo-18 and sapo-34 methanol to olefin catalysts. J Catal. 2011;279:397–402.

    Article  CAS  Google Scholar 

  44. Katada N, Niwa M. Analysis of acidic properties of zeolitic and non-zeolitic solid acid catalysts using temperature-programmed desorption of ammonia. Catal Surv Asia. 2004;8:161–70.

    Article  CAS  Google Scholar 

  45. Katada N, Igi H, Kim JH, Niwa M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J Phys Chem B. 1997;101:5969–77.

    Article  CAS  Google Scholar 

  46. Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal. 2010;269:219–28.

    Article  CAS  Google Scholar 

  47. Lónyi F, Valyon J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Micropor Mesopor Mater. 2001;47:293–301.

    Article  Google Scholar 

  48. Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A-Gen. 2011;398:1–17.

    Article  CAS  Google Scholar 

  49. Inagaki S, Shinoda S, Hayashi S, Wakihara T, Yamazaki H, Kondo JN, Kubota Y. Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications. Catal Sci Technol. 2016;6:2598–604.

    Article  CAS  Google Scholar 

  50. Javaid R, Urata K, Furukawa S, Komatsu T. Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Appl Catal A-Gen. 2015;491:100–5.

    Article  CAS  Google Scholar 

  51. Zhang X, Cheng D, Chen F, Zhan X. n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: the effect of mesopores. Chem Eng Sci. 2017;168:352–9.

    Article  CAS  Google Scholar 

  52. Zhu N, Liu Y, Wang Y, Chen F, Zhan X. Kinetic models for the coke combustion on deactivated ZSM-5/MOR derived from n-heptane cracking. Ind Eng Chem Res. 2010;49:89–93.

    Article  CAS  Google Scholar 

  53. Nalitham RV, Tarrer AR, Guin JA, Curtis CW. Kinetics of coke oxidation from solvent refined coal hydrotreating catalysts. Ind Eng Chem Process Des Develop. 1985;24:160–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Petrobrás.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno J. B. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, B.J.B., Sousa, L.V., Sarmento, L.R.A. et al. Effect of coke deposition over microporous and hierarchical ZSM-23 zeolite. J Therm Anal Calorim 147, 3161–3170 (2022). https://doi.org/10.1007/s10973-021-10740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10740-3

Keywords

Navigation