Skip to main content
Log in

Application of Gyarmati’s principle to study active boundary layer control of ionic fluid past a Riga plate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Similarity solutions of laminar electromagnetohydrodynamic boundary layer flows in forced convection are investigated aiming at the evaluation of irreversible momentum, heat and mass transport balance equations by a variational principle. The transportation fields inside the boundary layer are approximated as trial polynomial functions, and the functionals of variational principle are formulated. The Euler–Lagrange equations of variational principle are constructed as algebraic equations in terms of momentum, thermal and concentration boundary layer thicknesses. Electrically conductive fluid flow over a semi-infinite flat plate controlled by electromagnetic force (Z) is considered. The effects of viscous dissipation (Ec), thermophoretic particle deposition (Nt) and thermal diffusion (Sr) in the presence of heat source/sink (Q) on skin friction, heat and mass transfer rates have been examined in this work. To demonstrate the efficiency of the present technique, some specific obtained results are compared with the known numerical results in literature and the accuracy is ensured. Further, the regression analysis is performed to state the dependency of these parameters on heat and mass transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Gad-el-Hak M. Flow control: passive, active, and reactive flow management. Cambridge: Cambridge University Press; 2000. p. 27–30.

    Book  Google Scholar 

  2. Gailitis AK, Lielausis OA. On the possibility of drag reduction of a flat plate in an electrolyte. Appl Magnetohydrodyn. 1961;12:143–6.

    Google Scholar 

  3. Weier T, Fey U, Gerbeth G, Mutschke G, Lielausis O, Platacis E. Boundary layer control by means of wall parallel Lorentz forces. Magnetohydrodyn. 2001;37:177–86.

    Article  Google Scholar 

  4. Magyari E, Pantokratoras A. Aiding and opposing mixed convection flows over the Riga plate. Commun Nonlinear Sci Numer Simul. 2011;16:3158–67. https://doi.org/10.1016/j.cnsns.2010.12.003.

    Article  Google Scholar 

  5. Watanabe T, Pop I. Thermal boundary layers in magnetohydrodynamic flow over a flat plate in the presence of a transverse magnetic field. Acta Mech. 1994;105:233–8. https://doi.org/10.1007/BF01183954.

    Article  Google Scholar 

  6. Goren SL. Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate. J Colloid Interface Sci. 1977;61:77–85. https://doi.org/10.1016/0021-9797(77)90416-7.

    Article  CAS  Google Scholar 

  7. Talbot L, Cheng R, Schefer R, Willis D. Thermophoresis of particles in a heated boundary layer. J Fluid Mech. 1980;101:737–58. https://doi.org/10.1017/S0022112080001905.

    Article  Google Scholar 

  8. Mills AF, Hang Xu, Ayazi F. The effect of wall suction and thermophoresis on aerosol particle deposition from a laminar boundary layer on a flat plate. Int J Heat Mass Trans. 1984;27:1110–3. https://doi.org/10.1016/0017-9310(84)90127-3.

    Article  CAS  Google Scholar 

  9. Chang YP, Tsai R, Sui FM. The effect of thermophoresis on particle deposition from a mixed convection flow onto a vertical flat plate. J Aerosol Sci. 1999;30:1363–78. https://doi.org/10.1016/S0021-8502(99)00023-3.

    Article  CAS  Google Scholar 

  10. Selim A, Hossain MA, Rees DAS. The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. Int J Therm Sci. 2003;42:973–82. https://doi.org/10.1016/S1290-0729(03)00075-9.

    Article  Google Scholar 

  11. Chamkha AJ, Issa C. Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. Int J Numer Method Heat Fluid Flow. 2000;10:432–49. https://doi.org/10.1108/09615530010327404.

    Article  Google Scholar 

  12. Seddeek MA. Finite-element method for the effects of chemical reaction, variable viscosity, thermophoresis and heat generation/absorption on a boundary-layer hydromagnetic flow with heat and mass transfer over a heat surface. Acta Mech. 2005;177:1–18. https://doi.org/10.1007/s00707-005-0249-8.

    Article  Google Scholar 

  13. Kafoussias NG, Williams EW. Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity. Int J Eng Sci. 1995;33:1369–84. https://doi.org/10.1016/0020-7225(94)00132-4.

    Article  CAS  Google Scholar 

  14. Pal Dulal, Mondal Hiranmoy. Influence of thermophoresis and Soret-Dufour on magnetohydrodynamic heat and mass transfer over a non-isothermal wedge with thermal radiation and Ohmic dissipation. J Magn Magn Mater. 2013;331:250–5. https://doi.org/10.1016/j.jmmm.2012.11.048.

    Article  CAS  Google Scholar 

  15. Bhattacharyya K, Layek GC. Similarity solution of MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing. Meccanica. 2012;47:1043–8. https://doi.org/10.1007/s11012-011-9461-x.

    Article  Google Scholar 

  16. Parand K, Shahini M, Mehdi Dehghan. Solution of a laminar boundary layer flow via a numerical method. Commun Nonlinear Sci Numer Simul. 2010;15:360–7. https://doi.org/10.1016/j.cnsns.2009.04.007.

    Article  Google Scholar 

  17. Alizadeh R, Mohebbi Najm Abad J, Fattahi A, Alhajri E, Karimi N. Application of machine learning to investigation of heat and mass transfer over a cylinder surrounded by porous media-the radial basic function network. ASME J Energy Resour Technol. 2020;142:112109–12. https://doi.org/10.1115/1.4047402.

    Article  CAS  Google Scholar 

  18. Zhao Jinhu. Finite volume method for fractional Maxwell viscoelastic fluid over a moving plate with convective boundary condition. ASME J Heat Transf. 2020;142:111802–6. https://doi.org/10.1115/1.4047644.

    Article  CAS  Google Scholar 

  19. Ghalambaz M, Mehryan SAM, Zahmatkesh Iman, Chamkha AJ. Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int J Therm Sci. 2020;157:106503. https://doi.org/10.1016/j.ijthermalsci.2020.106503.

    Article  Google Scholar 

  20. Ghalambaz M, Mehryan SAM, Mashoofi N, Ahmad Hajjar, Chamkha AJ, Mikhail Sheremet, Obai Younis. Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Adv Powder Tech. 2020;31:4470–81. https://doi.org/10.1016/j.apt.2020.09.022.

    Article  CAS  Google Scholar 

  21. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AL. Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity. J Therm Anal Calorim. 2019;139:2321–36. https://doi.org/10.1007/s10973-019-08617-7.

    Article  CAS  Google Scholar 

  22. Seyed Mohsen Hashem Zadeh, Mehryan SAM, Ghalambaz M, Maryam Ghodrat, John Young, Chamkha AJ. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy. 2020;213:118761. https://doi.org/10.1016/j.energy.2020.118761.

    Article  CAS  Google Scholar 

  23. Selimefendigil F, Oztop HF, Chamkha AJ. Role of magnetic field on forced convection of nanofluid in a branching channel. Int J Numer Method Heat Fluid Flow. 2019;30:1755–72. https://doi.org/10.1108/HFF-10-2018-0568.

    Article  Google Scholar 

  24. Kumar B, Seth GS, Nandkeolyar R, Chamkha AJ. Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int J Therm Sci. 2019;146:106101. https://doi.org/10.1016/j.ijthermalsci.2019.106101.

    Article  CAS  Google Scholar 

  25. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 2019;9:025103. https://doi.org/10.1063/1.5086247.

    Article  CAS  Google Scholar 

  26. Thameem Basha H, Sivaraj R, Subramanyam Reddy A, Chamkha AJ. SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation - solar energy application. Eur Phys J Spec Top. 2019;228:2531–51. https://doi.org/10.1140/epjst/e2019-900048-x.

    Article  CAS  Google Scholar 

  27. Veera Krishna M, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Res Phys. 2019;15:102652. https://doi.org/10.1016/j.rinp.2019.102652.

    Article  Google Scholar 

  28. Modather M, Rashad AM, Chamkha AJ. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turk J Eng Environ Sci. 2009;33:245–57. https://doi.org/10.3906/muh-0906-31.

    Article  CAS  Google Scholar 

  29. Takhar HS, Chamkha AJ, Nath G. Combined heat and mass transfer along a vertical moving cylinder with a free stream. Heat Mass Transf. 2000;36:237–46. https://doi.org/10.1007/s002310050391.

    Article  Google Scholar 

  30. Chamkha AJ. MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl Math Model. 1997;21:603–9. https://doi.org/10.1016/S0307-904X(97)00084-X.

    Article  Google Scholar 

  31. Singh P, Bhattacharya DK. Application of Gyarmati principle to boundary layer flow. Acta Mech. 1978;30:137–44. https://doi.org/10.1007/BF01177444.

    Article  Google Scholar 

  32. Singh P, Raj SA. Analytical study of laminar boundary layers with non-uniform main stream velocity and wall temperature. J Non-Equilib Thermodyn. 1985;10:287–304. https://doi.org/10.1515/jnet.1985.10.4.287.

    Article  Google Scholar 

  33. Chandrasekar M. Thermodynamical modeling of boundary layer flow with suction and injection. ASME J Appl Mech. 1998;65:764–8. https://doi.org/10.1115/1.2789121.

    Article  CAS  Google Scholar 

  34. Chandrasekar M, Kasiviswanathan MS. Variational approach to MHD stagnation flow of nanofluid towards permeable stretching sheet. Int J Heat Technol. 2018;36:411–21. https://doi.org/10.18280/ijht.360205.

    Article  Google Scholar 

  35. Grinberg E. On determination of properties of some potential fields. Appl Magnetohydrodyn Rep Phys Inst Riga. 1961;12:147–54.

    Google Scholar 

  36. Gyarmati I. On the variational principles of thermodynamics. Acta Chim Hung. 1965;43:353–76.

    CAS  Google Scholar 

  37. Gyarmati I. On the governing principle of dissipative processes and its extension to non-linear problems. Ann Phys. 1969;23:353–78. https://doi.org/10.1002/andp.19694780707.

    Article  Google Scholar 

  38. Gyarmati I. Non equilibrium thermodynamics: field theory and variational principles. Berlin: Springer; 1970.

    Book  Google Scholar 

  39. Onsager L. Reciprocal relations in irreversible processes-I. Phys Rev. 1931;37:405–6. https://doi.org/10.1103/PhysRev.37.405.

    Article  CAS  Google Scholar 

  40. Onsager L. Reciprocal relations in irreversible processes-II. Phys Rev. 1931;38:2265–6. https://doi.org/10.1103/PhysRev.38.2265.

    Article  CAS  Google Scholar 

  41. Stark A. Approximation methods for the solution of heat conduction problems using Gyarmati’s principle. Ann Phys. 1974;486:53–75. https://doi.org/10.1002/andp.19744860105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chandrasekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, M., Anitha, S.M. & Kasiviswanathan, M.S. Application of Gyarmati’s principle to study active boundary layer control of ionic fluid past a Riga plate. J Therm Anal Calorim 147, 4227–4243 (2022). https://doi.org/10.1007/s10973-021-10727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10727-0

Keywords

Navigation