Determination of biodiesel purity through feature mapping to the multi-dimensional space by the LS-SVM approach


Purity is one of the essential properties of biodiesel. Since the purity parameter depends on different operating conditions, its direct measurement is too hard and can only be obtained for specific ranges of conditions. Therefore, this work considers the least-squares support vector machines (LS-SVMs) that transform operating conditions to a multi-dimensional space to simulate biodiesel purity in wide ranges of operating conditions. Indeed, we develop a reliable LS-SVM approach for modeling the biodiesel purity as a function of catalyst type and its concentration, reaction time, temperature, methanol-to-oil volume ratio, frequency, and amplitude of ultrasonic waves. The designed LS-SVM’s predictive performance is compared with four available artificial intelligence (AI) techniques in reliable literature. The obtained results confirm that the LS-SVM paradigm outperforms other considered AI-based techniques regarding five different statistical criteria. Our LS-SVM model provides AARD = 2.2%, RMSE = 3.46, and R2 = 0.9868 for the prediction of 267 experimental data points, which includes 267 data points. This model is finally employed for investigating the effect of different influential variables on biodiesel purity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Wang G, Yao Y, Chen Z, Hu P. Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy. 2019;166:256–66.

    Article  Google Scholar 

  2. 2.

    Eshgarf H, Kalbasi R, Maleki A, Shadloo MS, Karimipour A. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2020.

  3. 3.

    He L, Chen Y, Zhao H, Tian P, Xue Y, Chen L. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci Total Environ. 2018;627:1585–601.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Abdi-khanghah M, Alrashed AAAA, Hamoule T, Behbahani RM, Goodarzi M. Toluene methylation to para-xylene. J Therm Anal Calorim. 2019;135:1723–32.

    CAS  Article  Google Scholar 

  5. 5.

    Lu H, Guan Y, He L, Adhikari H, Pellikka P, Heiskanen J, et al. Patch aggregation trends of the global climate landscape under future global warming scenario. Int J Climatol. 2020;40:2674–85.

    Article  Google Scholar 

  6. 6.

    Lv Q, Liu H, Yang D, Liu H. Effects of urbanization on freight transport carbon emissions in China: common characteristics and regional disparity. J Clean Prod. 2019;211:481–9.

    Article  Google Scholar 

  7. 7.

    Chen Y, He L, Li J, Zhang S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput Chem Eng. 2018;109:216–35.

    CAS  Article  Google Scholar 

  8. 8.

    Abdollahzadeh Jamalabadi MY, Safaei MR, Alrashed AAAA, Nguyen TK, Bandarra Filho EP. Entropy generation in thermal radiative loading of structures with distinct heaters. Entropy. 2017;19:506.

    Article  CAS  Google Scholar 

  9. 9.

    He L, Chen Y, Li J. A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. Resour Conserv Recycl. 2018;133:206–28.

    Article  Google Scholar 

  10. 10.

    Han X, Zhang D, Yan J, Zhao S, Liu J. Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards Zero Liquid Discharge: energetic, economic and environmental analyses. J Clean Prod. 2020;261:121144.

    CAS  Article  Google Scholar 

  11. 11.

    Han X, Chen N, Yan J, Liu J, Liu M, Karellas S. Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No. 0 feedwater pre-heater under partial loads. J Clean Prod. 2019;233:1106–22.

    Article  Google Scholar 

  12. 12.

    Chen Y, He L, Guan Y, Lu H, Li J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers Manag. 2017;134:382–98.

    Article  Google Scholar 

  13. 13.

    Liu W, Shadloo MS, Tlili I, Maleki A, Bach Q-V. The effect of alcohol–gasoline fuel blends on the engines’ performances and emissions. Fuel. 2020;276:117977.

    CAS  Article  Google Scholar 

  14. 14.

    Yang W, Pudasainee D, Gupta R, Li W, Wang B, Sun L. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Process Technol. 2020;213:106657.

    Article  CAS  Google Scholar 

  15. 15.

    Zhao X, Ye Y, Ma J, Shi P, Chen H. Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environ Sci Pollut Res. 2020;7:1–15.

    Google Scholar 

  16. 16.

    Jiao Y, Mei Y, Wang L, Liu J, Zhang Z, Pan X, et al. Optimization and kinetic study of biodiesel production from diseased swine carcasses. J Biobased Mater Bioenergy. 2019;13:464–74.

    CAS  Article  Google Scholar 

  17. 17.

    Dhingra S, Dubey KK, Bhushan G. A polymath approach for the prediction of optimized transesterification process variables of polanga biodiesel. J Am Oil Chem Soc. 2014;91:641–53.

    CAS  Article  Google Scholar 

  18. 18.

    Hooshmand P, KhakRah H, Balootaki HK, Jamalabadi MYA. Recycling municipal solid waste utilizing gasification technology: a case study. J Therm Anal Calorim. 2020;139:2705–18.

    CAS  Article  Google Scholar 

  19. 19.

    Lu H, Tian P, He L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew Sustain Energy Rev. 2019;112:788–96.

    Article  Google Scholar 

  20. 20.

    Hu X, Chong H-Y, Wang X. Sustainability perceptions of off-site manufacturing stakeholders in Australia. J Clean Prod. 2019;227:346–54.

    Article  Google Scholar 

  21. 21.

    Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296–306.

    CAS  Article  Google Scholar 

  22. 22.

    Asadi A, Kadijani ON, Doranehgard MH, Bozorg MV, Xiong Q, Shadloo MS, et al. Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine. Renew Energy. 2020;150:1019–29.

    CAS  Article  Google Scholar 

  23. 23.

    Aghel B, Mohadesi M, Ansari A, Maleki M. Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renew Energy. 2019;142:207–14.

    CAS  Article  Google Scholar 

  24. 24.

    de Jesus SS, Ferreira GF, Moreira LS, Maciel FR. Biodiesel production from microalgae by direct transesterification using green solvents. Renew Energy. 2020;160:1283–94.

    Article  CAS  Google Scholar 

  25. 25.

    Encinar JM, Gonzalez JF, Rodriguez JJ, Tejedor A. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energy Fuels. 2002;16:443–50.

    CAS  Article  Google Scholar 

  26. 26.

    Raheem I, Mohiddin MNB, Tan YH, Kansedo J, Mubarak NM, Abdullah MO, et al. A review on influence of reactor technologies and kinetic studies for biodiesel application. J Ind Eng Chem. 2020;91:54–68.

    CAS  Article  Google Scholar 

  27. 27.

    Aghel B, Mohadesi M, Sahraei S. Effect of different cosolvents on transesterification of waste cooking oil in a microreactor. Chem Eng Technol. 2018;41:598–605.

    CAS  Article  Google Scholar 

  28. 28.

    Sharma A, Kodgire P, Kachhwaha SS. Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: process optimization and conversion rate evaluation. J Clean Prod. 2020;259:120982.

    CAS  Article  Google Scholar 

  29. 29.

    Teixeira LSG, Assis JCR, Mendonça DR, Santos ITV, Guimarães PRB, Pontes LAM, et al. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Process Technol. 2009;90:1164–6.

    CAS  Article  Google Scholar 

  30. 30.

    Sáez-Bastante J, Pinzi S, Arzamendi G, De Castro MDL, Priego-Capote F, Dorado MP. Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel. Fuel. 2014;125:183–91.

    Article  CAS  Google Scholar 

  31. 31.

    Carmona-Cabello M, Sáez-Bastante J, Pinzi S, Dorado MP. Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification. Fuel. 2019;255:115817.

    CAS  Article  Google Scholar 

  32. 32.

    Malani RS, Shinde V, Ayachit S, Goyal A, Moholkar VS. Ultrasound–assisted biodiesel production using heterogeneous base catalyst and mixed non-edible oils. Ultrason Sonochem. 2019;52:232–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Martinez-Guerra E, Gude VG. Determining optimum pulse mode for ultrasound enhanced biodiesel production. J Ind Eng Chem. 2016;35:14–9.

    CAS  Article  Google Scholar 

  34. 34.

    Muthukumaran C, Praniesh R, Navamani P, Swathi R, Sharmila G, Kumar NM. Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel. 2017;195:217–25.

    CAS  Article  Google Scholar 

  35. 35.

    Xiong Q, Zhang X, Wang W-F, Gu Y. A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI. Comput Math Methods Med. 2020;2020.

  36. 36.

    Moayedi H, Mosallanezhad M, Safuan A, Amizah W, Jusoh W, Muazu MA. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl. 2019.

    Article  Google Scholar 

  37. 37.

    Khatami I, Jamalabadi MYA. Optimal design of microphone array in a planar circular configuration by genetic algorithm enhanced beamforming. J Therm Anal Calorim. 2020.

  38. 38.

    Zenggang X, Zhiwen T, Xiaowen C, Xue-min Z, Kaibin Z, Conghuan Y. Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst. 2019;93:1–8.

    Google Scholar 

  39. 39.

    Bai B, Guo Z, Zhou C, Zhang W, Zhang J. Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci (Ny). 2021;546:42–59.

    Article  Google Scholar 

  40. 40.

    Ren Y, Peng D, Wu H, Yang L, Wu X, Wu Y, et al. Enhanced carbon dioxide flux by catechol–Zn2+ synergistic manipulation of graphene oxide membranes. Chem Eng Sci. 2019;195:230–8.

    CAS  Article  Google Scholar 

  41. 41.

    Zhang X, Wang Y, Chen X, Su C-Y, Li Z, Wang C, et al. Decentralized adaptive neural approximated inverse control for a class of large-scale nonlinear hysteretic systems with time delays. IEEE Trans Syst Man Cybern Syst. 2018;49:2424–37.

    Article  Google Scholar 

  42. 42.

    Sakthivel G. Prediction of CI engine performance, emission and combustion characteristics using fish oil as a biodiesel at different injection timing using fuzzy logic. Fuel. 2016;183:214–29.

    CAS  Article  Google Scholar 

  43. 43.

    Chen H, Qiao H, Xu L, Feng Q, Cai K. A fuzzy optimization strategy for the implementation of RBF LSSVR model in vis–NIR analysis of pomelo maturity. IEEE Trans Ind Inform. 2019;15:5971–9.

    Article  Google Scholar 

  44. 44.

    Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P. Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans Fuzzy Syst. 2020;28:2702–10.

    Article  Google Scholar 

  45. 45.

    Wang J, Huang Y, Wang T, Zhang C, Hui LY. Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures. Appl Soft Comput. 2020;93:106372.

    Article  Google Scholar 

  46. 46.

    Zhang C, Chen Z, Wang J, Liu Z, Chen CLP. Fuzzy adaptive two-bit-triggered control for a class of uncertain nonlinear systems with actuator failures and dead-zone constraint. IEEE Trans Cybern. 2020;51:210–21.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Li T, Xu M, Zhu C, Yang R, Wang Z, Guan Z. A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans Image Process. 2019;28:5663–78.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Lv Q, Liu H, Wang J, Liu H, Shang Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci Total Environ. 2020;703:134394.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Qian J, Feng S, Li Y, Tao T, Han J, Chen Q, et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt Lett. 2020;45:1842–5.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Lv Z, Qiao L. Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl Soft Comput. 2020;92:106300.

    Article  Google Scholar 

  51. 51.

    Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, et al. Deep learning: a rapid and efficient route to automatic metasurface design. Adv Sci. 2019;6:1900128.

    Article  Google Scholar 

  52. 52.

    Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, et al. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.

    CAS  Article  Google Scholar 

  53. 53.

    Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NWBM. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO–TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys A Stat Mech Appl. 2019;519:209–16.

    CAS  Article  Google Scholar 

  54. 54.

    Yue H, Wang H, Chen H, Cai K, Jin Y. Automatic detection of feather defects using Lie group and fuzzy Fisher criterion for shuttlecock production. Mech Syst Signal Process. 2020;141:106690.

    Article  Google Scholar 

  55. 55.

    Qu S, Han Y, Wu Z, Raza H. Consensus modeling with asymmetric cost based on data-driven robust optimization. Gr Decis Negot 2020;1–38.

  56. 56.

    Keshavarzzadeh AH, Ahmadi P, Safaei MR. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. Int J Hydrogen Energy. 2019;44:21379–96.

    CAS  Article  Google Scholar 

  57. 57.

    Wang B, Zhang BF, Liu XW, Zou FC. Novel infrared image enhancement optimization algorithm combined with DFOCS. Optik (Stuttg). 2020;224:165476.

    Article  Google Scholar 

  58. 58.

    Liu J, Wu C, Wu G, Wang X. A novel differential search algorithm and applications for structure design. Appl Math Comput. 2015;268:246–69.

    Google Scholar 

  59. 59.

    Rajendra M, Jena PC, Raheman H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel. 2009;88:868–75.

    CAS  Article  Google Scholar 

  60. 60.

    Wong KY, Ng J-H, Chong CT, Lam SS, Chong WT. Biodiesel process intensification through catalytic enhancement and emerging reactor designs: a critical review. Renew Sustain Energy Rev. 2019;116:109399.

    CAS  Article  Google Scholar 

  61. 61.

    Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy. 2018;118:527–35.

    CAS  Article  Google Scholar 

  62. 62.

    Hu XE, Liu L, Luo X, Xiao G, Shiko E, Zhang R, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture. Appl Energy. 2020;260:114244.

    CAS  Article  Google Scholar 

  63. 63.

    Li Z-G, Cheng H, Gu T-Y. Research on dynamic relationship between natural gas consumption and economic growth in China. Struct Change Econ Dyn. 2019;49:334–9.

    Article  Google Scholar 

  64. 64.

    Wang Y, Ren Y, Wu H, Wu X, Yang H, Yang L, et al. Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading. J Membr Sci. 2020;602:117970.

    Article  CAS  Google Scholar 

  65. 65.

    Liu J, Wang C, Sun H, Wang H, Rong F, He L, et al. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl Catal B Environ. 2020;279:119407.

    CAS  Article  Google Scholar 

  66. 66.

    Wang X, Wang J, Sun X, Wei S, Cui L, Yang W, et al. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018;11:988–96.

    CAS  Article  Google Scholar 

  67. 67.

    Chen S, Hassanzadeh-Aghdam MK, Ansari R. An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J Alloys Compd. 2018;767:632–41.

    CAS  Article  Google Scholar 

  68. 68.

    Desai SK, Bera S, Singh M, Mondal D. Polyurethane‐functionalized starch nanoparticles for the purification of biodiesel. J Appl Polym Sci. 2017;134.

  69. 69.

    Jamalabadi MYA. Analysis and numerical modeling of subcooled boiling in energy systems in vertical porous channel. J Therm Anal Calorim. 2020.

  70. 70.

    Cheng L-H, Cheng Y-F, Chen J. Predicting effect of interparticle interactions on permeate flux decline in CMF of colloidal suspensions: an overlapped type of local neural network. J Membr Sci. 2008;308:54–65.

    CAS  Article  Google Scholar 

  71. 71.

    Zhu Q. Research on road traffic situation awareness system based on image big data. IEEE Intell Syst. 2019;35:18–26.

    Article  Google Scholar 

  72. 72.

    Lv X, Li N, Xu X, Yang Y. Understanding the emergence and development of online travel agencies: a dynamic evaluation and simulation approach. Internet Res. 2020;30:1783–810.

    Article  Google Scholar 

  73. 73.

    Cao B, Wang X, Zhang W, Song H, Lv Z. A many-objective optimization model of industrial internet of things based on private blockchain. IEEE Netw. 2020;34:78–83.

    Article  Google Scholar 

  74. 74.

    Karimi M, Vaferi B, Hosseini SH, Olazar M, Rashidi S. Smart computing approach for design and scale-up of conical spouted beds with open-sided draft tubes. Particuology. 2020;55:179–90.

    Article  Google Scholar 

  75. 75.

    Karimi M, Vaferi B, Hosseini SH, Rasteh M. Designing an efficient artificial intelligent approach for estimation of hydrodynamic characteristics of tapered fluidized bed from its design and operating parameters. Ind Eng Chem Res. 2018;57:259–67.

    CAS  Article  Google Scholar 

  76. 76.

    Vaferi B, Karimi M, Azizi M, Esmaeili H. Comparison between the artificial neural network, SAFT and PRSV approach in obtaining the solubility of solid aromatic compounds in supercritical carbon dioxide. J Supercrit Fluids. 2013;77:44–51.

    CAS  Article  Google Scholar 

  77. 77.

    Suykens JAK, De Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing. 2002;48:85–105.

    Article  Google Scholar 

  78. 78.

    Pardo M, Sberveglieri G. Classification of electronic nose data with support vector machines. Sens Actuators B Chem. 2005;107:730–7.

    CAS  Article  Google Scholar 

  79. 79.

    Cao B, Zhao J, Gu Y, Ling Y, Ma X. Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol Comput. 2020;53:100626.

    Article  Google Scholar 

  80. 80.

    Vapnik V. The nature of statistical learning theory. Springer; 2013.

    Google Scholar 

  81. 81.

    Mozer MC, Jordan MI, Petsche T. Advances in Neural Information Processing Systems 9. In: Proceedings of the 1996 conference. MIT Press; 1997.

  82. 82.

    Aghbashlo M, Hosseinpour S, Tabatabaei M, Dadak A. Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. Energy. 2017;132:65–78.

    CAS  Article  Google Scholar 

  83. 83.

    Kashyap SS, Gogate PR, Joshi SM. Ultrasound assisted synthesis of biodiesel from karanja oil by interesterification: intensification studies and optimization using RSM. Ultrason Sonochem. 2019;50:36–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Maran JP, Priya B. Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrason Sonochem. 2015;23:192–200.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Hoseini SS, Najafi G, Ghobadian B, Mamat R, Ebadi MT, Yusaf T. Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters. Renew Energy. 2019;130:50–60.

    CAS  Article  Google Scholar 

  86. 86.

    Santos FFP, Rodrigues S, Fernandes FAN. Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process Technol. 2009;90:312–6.

    CAS  Article  Google Scholar 

  87. 87.

    Moayedi H, Aghel B, Foong LK, Bui DT. Feature validity during machine learning paradigms for predicting biodiesel purity. Fuel. 2019;262:116498.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Saleh Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yahya, S.I., Hosseini, S. & Rezaei, A. Determination of biodiesel purity through feature mapping to the multi-dimensional space by the LS-SVM approach. J Therm Anal Calorim (2021).

Download citation


  • Biodiesel purity
  • AI-based simulation
  • LS-SVM paradigm
  • Statistical analyses
  • Parametric study