Skip to main content
Log in

Numerical simulation of three-dimensional thermo-solutal convection of micropolar multi-walled carbon nanotubes water nanofluid stabilized by lignin and sodium polycarboxylate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A computational analysis has been performed in this study to solve three-dimensional thermo-solutal natural convection in a differentially heated cubical enclosure filled with micropolar CNT/water nanofluid stabilized by two types of surfactants lignin and sodium polycarboxylate. The work is carried out for different pertinent parameters as Rayleigh number (104 \(\le\) Ra \(\le\) 106), micropolar parameter (0 \(\le\) K \(\le\) 10), buoyancy ratio (−1 \(\le\) N \(\le\) 0) and nanoparticles’s volume fraction (0.0055% \(\le \varphi \le\) 0.557%). It is observed that the heat and mass transfer rates are lower for a micropolar nanofluid model when compared to the pure nanofluid model. In fact, the enhancement of micropolar parameter results a decrease in average Nusselt and Sherwood numbers. The use of lignin as a surfactant ameliorates heat and mass transfer rate and nanofluid flow better than the use of sodium polycarboxylate as a surfactant. The nanoparticles volume fraction can be used as a control element for heat rate and fluid flow. Thus, for a nanoparticles volume concentration less than the critical value, the flow intensity is ameliorated and is deteriorated when it exceeds this value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

C :

Dimensionless species concentration, \(C = \frac{{C^{\prime} - C_{\text{l}}^{^{\prime}} }}{{C_{\text{H}}^{^{\prime}} - C_{\text{L}}^{^{\prime}} }}\)

C′:

Species concentration (kg m3)

C p :

Specific heat at constant pressure (kJ kg1 K1)

D :

Species diffusivity (m2 s1)

G :

Acceleration of gravity (m s2)

\(\mathop{H}\limits^{\rightharpoonup}\) :

Dimensionless microrotation vector

\(\vec{H}^{\prime}\) :

The microrotation vector (m s1)

J:

Microinertia coefficient (microrotation radius)

K :

Micropolar parameter, \(K = \frac{k}{{\mu_{\text{f}} }}\)

K :

Vortex viscosity (kg m1 s1)

\(k\) :

Thermal conductivity (W m1 K1)

L:

Enclosure height (m)

Le :

Lewis number, \(Le = \frac{\alpha }{D}\)

N :

Buoyancy ratio, \(N = \frac{{\beta_{\text{Cf}} \left( { C_{\text{H}} - C_{\text{L}} } \right)}}{{\beta_{\text{Tf}} \left( { T_{\text{H}} - T_{\text{C}} } \right)}}\)

Nu :

Local Nusselt number

\(\overline{Nu}\) :

Average Nusselt number

P :

Dimensionless pressure

Pr :

Prandtl number, \(Pr = \frac{{\nu_{\text{f}} }}{{\alpha_{\text{f}} }}\),

Ra :

Thermal Rayleigh number, \(Ra = \frac{{g\beta_{{{\text{Tf}}}} \left( { T_{{\text{H}}} - T_{{\text{C}}} } \right)L^{3} }}{{\nu_{{\text{f}}} \alpha_{{\text{f}}} }}\)

Sh :

Local Sherwood number

\(\overline{Sh}\) :

Average Sherwood number

T :

Dimensionless time, \(t = \frac{\alpha t^{\prime}}{{L^{2} }}\)

T :

Dimensionless temperature, \(T = \frac{{T^{{\prime }} - T_{\text{C}}^{^{\prime}} }}{{T_{\text{H}}^{^{\prime}} - T_{\text{C}}^{^{\prime}} }}\)

T′:

Temperature (K)

\(\vec{U}\) :

Dimensionless velocity \(\vec{U} = \frac{{\overrightarrow {U^{\prime}} L}}{{\alpha_{\text{f}} }}\)

\(\vec{U}^{\prime}\) :

Velocity (m s1)

x, y, z :

Dimensionless Cartesian coordinates, x = x′/L, y = y′/L, z = z′/L

\(\alpha\) :

Thermal diffusivity (m2 s1)

β C :

Coefficient of compositional expansion(m3 kg1)

β T :

Coefficient of thermal expansion (K1)

φ :

Solid volume fraction

μ :

Dynamic viscosity (kg m1 s1)

ν :

Kinematic viscosity (m2 s1)

ρ :

Density (kg m3)

\(\vec{\omega }\) :

Dimensionless vorticity, \(\vec{\omega } = \frac{{\overrightarrow {\omega ^{\prime}} L}}{{\alpha_{\text{f}} }}\)

\(\vec{\omega }^{^{\prime}}\) :

Vorticity (s1)

\(\vec{\psi }\) :

Dimensionless vector potential of velocity, \(\vec{\psi } = \frac{{\overrightarrow {\psi ^{\prime}} }}{{\alpha_{{\text{f}}} }}\)

\(\vec{\psi }^{^{\prime}}\) :

Vector potential of velocity (m2 s1)

C :

Cold

f :

Fluid

H :

Hot

L:

Low

max:

Maximum

nf :

Nanofluid

P :

Particle

1 :

x-Component

2 :

y-Component

3 :

z-Component

:

Dimensional variables

References

  1. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2002;39:775–84.

    Google Scholar 

  2. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    CAS  Google Scholar 

  3. Jou RY, Tzeng SC. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Commun Heat Mass Transf. 2006;33:727–36.

    Google Scholar 

  4. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35:657–65.

    CAS  Google Scholar 

  5. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

  6. Minea AA. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Int J Heat Mass Transf. 2014;68:78–84.

    CAS  Google Scholar 

  7. Bouhalleb M, Abbassi H. Numerical investigation of heat transfer by CuO–Water nanofluid in rectangular enclosures. Heat Transf Eng. 2015;37:13–23.

    Google Scholar 

  8. Minea AA, Buonomo B, Burggraf J, Ercole D, Karpaiya KR, Di Pasqua A, Sekrani G, Steffens J, Tibaut J, Wichmann N, Farber P, Huminic A, Huminic G, Mahu R, Manca O, Oprea C, Poncet S, Ravnik J. NanoRound: a benchmark study on the numerical approach in nanofluids’ simulation. Int Commun Heat Mass Transf. 2019;108:104292.

    CAS  Google Scholar 

  9. Purusothaman A, Nithyadevi N, Oztop HF, Divya V, Al-Salem K. Three dimensional numerical analysis of natural convection cooling with an array of discrete heaters embedded in nanofluid filled enclosure. Adv Pow Tech. 2018;27:268–80.

    Google Scholar 

  10. Selimefendigil F, Öztop HF. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2017;117:331–43.

    Google Scholar 

  11. Esfahani AJ, Bordbar V. Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids. J Nano Technol Eng Med. 2011;2:021002–11.

    Google Scholar 

  12. Parvin S, Nasrin R, Alim MA, Hossain NF. Double diffusive natural convection in a partially heated enclosure using nanofluid. Heat Transf Asian Res J. 2012;41:484–97.

    Google Scholar 

  13. Chen S, Yang B, Luo KH, Xiong X, Zheng C. Double diffusion natural convection in a square cavity filled with nanofluid. Int J Heat Mass Transf. 2016;95:1070–83.

    Google Scholar 

  14. Aly AM, Raizah ZAS. Double-diffusive natural convection in an enclosure filled with nanofluid using ISPH method. Alex Eng J. 2016;55:3037–52.

    Google Scholar 

  15. Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermal Heat Transf. 2004;18:481–5.

    CAS  Google Scholar 

  16. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Thermal Sci. 2009;48:1108–15.

    CAS  Google Scholar 

  17. Halelfadl S, Adham AM, Mohd-Ghazali N, Maré T, Estellé P, Ahmad R. Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. App Thermal Eng. 2014;62:492–9.

    CAS  Google Scholar 

  18. Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J Thermal Eng. 2015;1:381–90.

    Google Scholar 

  19. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity. Int Commun Heat Mass Transf. 2014;57:8–12.

    Google Scholar 

  20. Rahman MM, Öztop HF, Steele M, Naim AG, Al-Salem K, Ibrahim TA. Unsteady natural convection and statistical analysis in a CNT–water filled cavity with non-isothermal heating. Int Commun Heat Mass Transf. 2015;64:50–60.

    CAS  Google Scholar 

  21. Job VM, Gunakala SR. Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and joule dissipation effects. Num Heat Transf, Part A. 2015;59:1–23.

    Google Scholar 

  22. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Thermal Anal Calorim. 2017;28:1765–70.

    Google Scholar 

  23. Minea AA, Estellé P. Numerical study on CNT nanofluids behavior in laminar pipe flow. J Mol Liq. 2018;271:281–9.

    CAS  Google Scholar 

  24. Kolsi L, Alrashed AAAA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    CAS  Google Scholar 

  25. Al-Rashed AAAA, Kolsi L, Kalidasan K, Malekshah EH, Borjini MN, Kanna PR. Second law analysis of natural convection in a CNT-water nanofluid filled inclined 3D cavity with incorporated Ahmed Body. Int J Mech Sci. 2017;130:399–415.

    Google Scholar 

  26. Rahimi A, Kasaeipoor A, Malekshah EH, Kolsi L. Experimental and numerical study on heat transfer performance of three-dimensional natural convection in an enclosure filled with DWCNTs-water nanofluid. Powd Tech. 2017;322:340–52.

    CAS  Google Scholar 

  27. Eringen AC. Theory of micropolar fluids. J MathMech. 1966;16:1–18.

    Google Scholar 

  28. Aydın O, Pop I. Natural convection from a discrete heater in enclosures with a micropolar fluid. Int J Eng Sci. 2015;43:1409–18.

    Google Scholar 

  29. Zadravec M, Hriberšek M, Škerget L. Natural convection of micropolar fluids in an enclosure with boundary element method. Eng Anal Bound Elem. 2009;33:485–92.

    Google Scholar 

  30. Jena SK, Malla LK, Mahapatra SK, Chamkha AJ. Transient buoyancy-opposed double diffusive convection of micropolar fluids in a square enclosure. Int J Heat Mass Transf. 2014;81:681–94.

    Google Scholar 

  31. Abidi A, Borjini MN. Effects of microstructure on three-dimensional double-diffusive natural convection flow of micropolar fluid. Heat Transf Eng. 2019;41:361–76.

    Google Scholar 

  32. Bourantas GC, Loukopoulos VC. Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf. 2014;68:35–41.

    CAS  Google Scholar 

  33. Hashemi H, Namazian Z, Mehryan SAM. Cu-water micropolar nanofluid natural convection within a porous enclosure with heat generation. J Mol Liq. 2017;236:48–60.

    CAS  Google Scholar 

  34. Hussanan A, Salleh MZ, Khan I, Shafie S. Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil. J MolLiq. 2017;229:482–8.

    CAS  Google Scholar 

  35. Bourantas GC, Loukopoulos VC. MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int J Heat MassTransf. 2014;79:930–44.

    CAS  Google Scholar 

  36. Ahmed SE, Mansour MA, Hussein AK, Sivasankaran S. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng Sci Tech Int J. 2016;19:364–76.

    Google Scholar 

  37. Nering K, Rup K. The effect of nanoparticles added to heated micropolar fluid. Superlattices Microstruct. 2016;98:283–94.

    CAS  Google Scholar 

  38. Izadi M, Mehryan SAM, Sheremet MA. Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Institute Chem Eng. 2018;88:89–103.

    CAS  Google Scholar 

  39. Rashad A, Mansour M, Gorla RSR. Mixed convection from a discrete heater in lid-driven enclosures filled with non-Newtonian nanofluids. J Nanomater Nanoeng Nanosyst. 2017;231:3–16.

    CAS  Google Scholar 

  40. Abidi A, Raizah Z, Madiouli J. Magnetic field effect on the double diffusive natural convection in three-dimensional cavity filled with micropolar nanofluid. App Sci. 2018;8:2342–67.

    CAS  Google Scholar 

  41. Manaa N, Abidi A, Saleel CA, Al Makwash SM, Borjini MN. On simulation of double-diffusive natural convection in a micropolar nanofluid filled cubic cavity. Heat Transf Eng. 2020. https://doi.org/10.1080/01457632.2020.1756074.

    Article  Google Scholar 

  42. Manaa N, Abidi A, Ahamed SC, Madiouli J, Borjini MN. Three-dimensional numerical analysis on performance enhancement of micropolar hybrid nanofluid in comparison with simple nanofluid. Heat Transf Eng. 2020. https://doi.org/10.1080/01457632.2020.1807106.

    Article  Google Scholar 

  43. Therme-Excel: Physical characteristics of water at the atmospheric pressure; 2003. Last update: http://www.thermexcel.com/english/tables/eau_atm.htm.

  44. Mohd-Ghazali N, Estellé P, Halelfadl S, Maré T, Siong TC, Abidin U. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. J Them Anal Calorim. 2019;138:937–45.

    CAS  Google Scholar 

  45. Agarwal RS, Bhargava R, Balaji AVS. Finite element solution of non-steady three dimensional micropolar fluid flow at a stagnant point. Int J Eng Sci. 1990;28:851–7.

    CAS  Google Scholar 

  46. Takhar HS, Agarwal RS, Bhargava R, Jain S. Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point. Heat Mass Transf J. 1998;33:443–8.

    CAS  Google Scholar 

  47. Chamkha AJ, Jaradat M, Pop I. Three dimensional micropolar flow due to a stretching flat surface. Int J Fluid Mech Res. 2003;30:357–66.

    Google Scholar 

  48. Guram GS, Smith C. Stagnation flows of micropolar fluids with strong and weak interactions. Comput Math Appl. 1980;6:213–33.

    Google Scholar 

  49. Sezai I, Mohamad AA. Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradient. Phys Fluids. 2000;12:2210–23.

    Google Scholar 

  50. Kolsi L, Hussein AK, Borjini MN, Mohammed HA, Aïssia HB. Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with water–Al2O3 nanofluid. Arab J Sci Eng. 2014;39:7483–93.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the General Research Project under Grant Number (G.R.P-74-42). The first author gratefully acknowledges the Tunisian Ministry of Higher Education and Scientific Research for financial support to her stay in LGCGM, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Estellé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaa, N., Abidi, A., Estellé, P. et al. Numerical simulation of three-dimensional thermo-solutal convection of micropolar multi-walled carbon nanotubes water nanofluid stabilized by lignin and sodium polycarboxylate. J Therm Anal Calorim 147, 2985–3005 (2022). https://doi.org/10.1007/s10973-021-10667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10667-9

Keywords

Navigation