Skip to main content
Log in

An experimental investigation of microstructure surface roughness on pool boiling characteristics of \({\mathrm{TiO}}_{2}\) nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental setup for pool boiling of dilute dispersions of titanium dioxide (TiO2) nanoparticle in water-ethylene glycol 50 (WEG50) as the base fluid was developed. The nanofluid was stabilized by using sodium lauryl sulfate as a surfactant. The heater surface roughness was affected by the deposition of nanoparticles during boiling which consequently changes the heat transfer characteristics. Three copper heater surface roughnesses: smooth, semi-rough and rough, were used. The effect of surface roughness and nanofluid on boiling heat transfer coefficient (BHTC), surface wettability and nucleation site density were examined. The results showed that BHTC and nucleation site density were increased by increasing the heater surface roughness in the base fluid of WEG50. The findings of this study revealed that the effect of volume concentration of nanofluid on the BHTC significantly depends on the heater surface roughness. At heater surface roughness of 0.062 μm, BHTC increases compared to WEG50 base fluid for all volume concentrations of TiO2-WEG50 nanofluid. With increasing the volume concentration of nanofluid up to 0.005%, an increasing tendency in BHTC was observed but beyond that a decreasing trend was observed for heater surface roughness of 1.213 μm. However, as heater surface roughness reaches 3.146 μm, BHTC decreased by increasing nanofluid volume concentration, compared to WEG50 base fluid. Also, increment of heater surface roughness causes the nucleation site density to increase when either base fluid or nanofluid is used. By measuring static contact angle of sessile water droplet on heater surface before and after experiment, it was found that using TiO2-WEG50 nanofluid causes to surface wettability increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Abbreviations

\(q^{\prime \prime }\) :

Heat flux/W m−2

\(\Delta {\text{x}}\) :

Distance of different holes of the heater surface/m

h:

Boiling heat transfer coefficient/W m−2 K−1

T:

Temperature/K

U:

Uncertainty

Cp, l :

Specific heat capacity/J kg−1 K−1

Pr:

Prandtl number

hfg :

Latent heat of vaporization/J kg−1

Csf :

Surface/liquid parameter of the Rohsenow correlation

g:

Acceleration of gravity/m s−2

TW :

Surface temperature/K

T1 :

Temperature of the first thermocouple in the copper block/K

T2 :

Temperature of the second thermocouple in the copper block/K

T3 :

Temperature of the third thermocouple in the copper block/K

Tinlet :

Temperature of water inlet of condenser/K

Toutlet :

Temperature of water inlet of condenser/K

Ra :

Average surface roughness/µm

dp :

Average nanoparticle diameter/nm

V:

Voltage/v

I:

Electricity current/A

WEG50:

Water-ethylene glycol 50

SLS:

Sodium lauryl sulfate

BHTC:

Boiling heat transfer coefficient

TSM:

Taylor series method

RV:

Relative variation of BHTC

vol%:

Volume concentration of nanofluid

θ:

Static contact angle/°

ρ1 :

Density/kg m−3

σ:

Surface tension/N m−1

μ:

Dynamic viscosity/Pa s

l:

Liquid

v:

Vapor

References

  1. Razmi A, Soltani M, Aghanajafi C, Torabi M. Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES). Energy Convers Manag. 2019;187:262–73.

    Google Scholar 

  2. Razmi A, Soltani M, Torabi M. Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: energy and exergy analysis. Energy Convers Manag. 2019;195:1199–211.

    CAS  Google Scholar 

  3. Malvandi A. Anisotropic behavior of magnetic nanofluids (MNFs) at film boiling over a vertical cylinder in the presence of a uniform variable-directional magnetic field. Powder Technol. 2016;294:307–14.

    CAS  Google Scholar 

  4. Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. Int J Heat Mass Transf. 2009;52(5–6):1582–8.

    CAS  Google Scholar 

  5. Jia QX, Shi CM, Zhao GL. Influence of low boiling point nonsolvents on morphologies of PA6 electrospun fibers. Adv Mat Res. 2011;332:1322–5.

    Google Scholar 

  6. Dhir V. Boiling heat transfer. Annu Rev Fluid Mech. 1998;30:365–401.

    Google Scholar 

  7. Bergles AE. Enhancement of pool boiling. Int J Refrig. 1997;8(20):545–51.

    Google Scholar 

  8. Alimoradi H, Shams M. Optimization of subcooled flow boiling in a vertical pipe by using artificial neural network and multi objective genetic algorithm. Appl Therm Eng. 2017;100(111):1039–51.

    Google Scholar 

  9. Soleimani B, Keshavarz A. Heat transfer enhancement of an internal subcooled flow boiling over a hot spot. Appl Therm Eng. 2016;100(99):206–13.

    Google Scholar 

  10. Alimoradi H, Shams M, Valizadeh Z. The effects of nanoparticles in the subcooled boiling flow in the channels with different cross-sectional area and same hydraulic diameter. Modares Mech Eng. 2017;16(12):545–54.

    Google Scholar 

  11. Alimoradi H, Shams M. Numerical simulation of the effects of surface roughness on nucleation site density of nanofluid boiling. Modares Mech Eng. 2019;19(7):1613–22.

    Google Scholar 

  12. Khaleghi H, Ahmadi M, Sani HF. Effects of two-way turbulence interaction on the evaporating fuel sprays. J Appl Fluid Mech. 2019;12(5):1407–15.

    Google Scholar 

  13. Khaleghi H, Farani Sani H, Ahmadi M, Mohammadzadeh F. Effects of Turbulence on the secondary breakup of droplets in diesel fuel sprays. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020; .doi: https://doi.org/10.1177/0954407020958581

  14. Saffari H, Fathalizadeh H, Moghadasi H, Alipour S, Hosseinalipour SM. Experimental study of pool boiling enhancement for surface structuring with inclined intersected mesochannels using WEDM method on copper surfaces. J Therm Anal Calorim. 2020;139(3):1849–61. https://doi.org/10.1007/s10973-019-08601-1.

    Article  CAS  Google Scholar 

  15. Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;1(124):205–14.

    Google Scholar 

  16. Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi SN. Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag. 2015;100(105):1366–76.

    Google Scholar 

  17. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;2(119):1205–13. https://doi.org/10.1007/s10973-014-4197-1.

    Article  CAS  Google Scholar 

  18. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2016;3(127):2561–75. https://doi.org/10.1007/s10973-016-5868-x.

    Article  CAS  Google Scholar 

  19. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131:1553–66. https://doi.org/10.1007/s10973-017-6649-x.

    Article  CAS  Google Scholar 

  20. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;2(124):827–38. https://doi.org/10.1007/s10973-015-5113-z.

    Article  CAS  Google Scholar 

  21. Das SK, Putra N, Roetzel W. Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow. 2003;29:1237–47.

    CAS  Google Scholar 

  22. Ahmed O, Hamed MS. Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. Int J Heat Mass Transf. 2012;13(55):3423–36.

    Google Scholar 

  23. Raveshi MR, Keshavarz A, Mojarrad MS, Amiri S. Experimental investigation of pool boiling heat transfer enhancement of alumina–water–ethylene glycol nanofluids. Exp Therm Fluid Sci. 2013;44:805–14.

    CAS  Google Scholar 

  24. Heris SZ. Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol–water nanofluids. Int Commun Heat Mass Transf. 2011;10(38):1470–3.

    Google Scholar 

  25. Kedzierski MA. Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refrig. 2011;2(34):498–508.

    Google Scholar 

  26. Tang X, Zhao YH, Diao YH. Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate. Exp Therm Fluid Sci. 2014;52:88–96.

    CAS  Google Scholar 

  27. Shoghl SN, Bahrami M, Jamialahmadi M. The boiling performance of ZnO, α-Al2O3 and MWCNTs/water nanofluids: An experimental study. Exp Therm Fluid Sci. 2017;100(80):27–39.

    Google Scholar 

  28. Sarafraz MM, Hormozi F. Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp Therm Fluid Sci. 2014;52:205–14.

    CAS  Google Scholar 

  29. Sarafraz MM, Hormozi F. Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int Commun Heat Mass Transf. 2014;53:116–23.

    CAS  Google Scholar 

  30. Sarafraz MM, Hormozi F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int J Therm Sci. 2015;100(90):224–37.

    Google Scholar 

  31. Hu YW, Liu ZY, He YR. Effects of SiO2 nanoparticles on pool boiling heat transfer characteristics of water based nanofluids in a cylindrical vessel. Powder Technol. 2018;327:79–88.

    CAS  Google Scholar 

  32. Norouzipour A, Abdollahi A, Afrand M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid. Powder Technol. 2019;345:728–38.

    CAS  Google Scholar 

  33. Witharana, Sanjeeva. Boiling of refrigerants on enhanced surfaces and boiling of nanofluids. Disseration Energiteknik, 2003

  34. Soltani S, Etemad SG, Thibault J. Pool boiling heat transfer performance of Newtonian nanofluids. Heat Mass Transfer. 2009;45(12):1555–60.

    CAS  Google Scholar 

  35. Gobinath N, Venugopal T. Nucleate pool boiling heat transfer characteristics of R600a with CuO nanoparticles. J Mech Sci Technol. 2019;33(1):465–73.

    Google Scholar 

  36. Truong BH. Determination of pool boiling critical heat flux enhancement in nanofluids. ASME Int Mech Eng Congr Expos. 2007;43025:289–99.

    Google Scholar 

  37. Sajith V, Madhusoodanan MR, Sobhan CB. An experimental investigation of the boiling performance of water-based nanofluids. In International Conference on Micro/Nanoscale Heat Transfer 2008; 42924: 555–561.

  38. Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett. 2005;87(23):233107.

    Google Scholar 

  39. Taylor RA, Phelan PE. Pool boiling of nanofluids: Comprehensive review of existing data and limited new data. Int J Heat Mass Transf. 2009;23(52):5339–47.

    Google Scholar 

  40. Narayan GP, Anoop KB, Das SK. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. J Appl Phys. 2007;102:074317.

    Google Scholar 

  41. Park H, Lee SJ, Jung SY. Effect of nanofluid formation methods on behaviors of boiling bubbles. Int J Heat Mass Transf. 2019;135:1312–8. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.091.

    Article  CAS  Google Scholar 

  42. Park H, Lee SJ, Jung SY. X-ray imaging analysis on behaviors of boiling bubbles in nanofluids. Int J Heat Mass Transf. 2019;128:443–9.

    CAS  Google Scholar 

  43. Li Z, Sarafraz MM, Mazinani A, Hayat T, Alsulami H, Goodarzi M. Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces. Int J Heat Mass Transf. 2020;156:119780.

    CAS  Google Scholar 

  44. Li Z, Mazinani A, Hayat T, Al-Rashed AA, Alsulami H, Goodarzi M, Sarafraz MM. Transient pool boiling and particulate deposition of copper oxide nano-suspensions. Int J Heat Mass Transf. 2020;155:119743.

    CAS  Google Scholar 

  45. Coleman HW, Glenn Steele W. Experimentation, validation, and uncertainty analysis for engineers. Amsterdam: Wiley; 2009.

    Google Scholar 

  46. Dikici B, Eno E, Compere M. Pool boiling enhancement with environmentally friendly surfactant additives. J Therm Anal Calorim. 2014;3(116):1387–94. https://doi.org/10.1007/s10973-013-3634-x.

    Article  CAS  Google Scholar 

  47. Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130(3):2199–209.

    CAS  Google Scholar 

  48. Akbari A, Alavi Fazel SA, Maghsoodi S, Kootenaei AS. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids. J Therm Anal Calorim. 2019;135(1):697–711.

    CAS  Google Scholar 

  49. Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim. 2019;136(4):1781–93.

    CAS  Google Scholar 

  50. Rohsenow W. A Method of correlating heat transfer data for surface boiling of liquids. Trans ASME. 1952;74:969–76.

    CAS  Google Scholar 

  51. Pioro I. Experimental evaluation of constants for the Rohsenow pool boiling correlation. Int J Heat Mass Transf. 1999;11(42):2003–13.

    Google Scholar 

  52. Dareh FR, Haghshenasfard M, Esfahany MN, Jazi HS. Experimental investigation of time and repeated cycles in nucleate pool boiling of alumina/water nanofluid on polished and machined surfaces. Heat Mass Transf. 2017;54(6):1653–68.

    Google Scholar 

  53. Dadjoo M, Etesami N, Esfahany MN. Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl Therm Eng. 2017;124:353–61.

    CAS  Google Scholar 

  54. Shahmoradi Z, Etesami N, Esfahany MN. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun. 2013;47:113–20.

    CAS  Google Scholar 

  55. Kim SJ, Bang IC, Buongiorno J, Hu LW. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50:4105–16.

    CAS  Google Scholar 

  56. Kamel MS, Lezsovits F, Hussein AK. Experimental studies of flow boiling heat transfer by using nanofluids. J Therm Anal Calorim. 2019;138(6):4019–43.

    CAS  Google Scholar 

  57. Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface. J Therm Anal Calorim. 2019;135(3):1753–62.

    CAS  Google Scholar 

  58. Sarafraz MM, Hormozi F. Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int J Therm Sci. 2016;100:255–66.

    CAS  Google Scholar 

  59. Corty C. Surface variables in nucleate boiling. In Chemical Engineering Progress Symposium Series 1955; 51: 1–12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Shams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roodbari, M., Alimoradi, H., Shams, M. et al. An experimental investigation of microstructure surface roughness on pool boiling characteristics of \({\mathrm{TiO}}_{2}\) nanofluid. J Therm Anal Calorim 147, 3283–3298 (2022). https://doi.org/10.1007/s10973-021-10666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10666-w

Keywords

Navigation