Skip to main content
Log in

Thermal enthalpy regulation of methyl hexadecanoate/silica microcapsules with CTAB as emulsifier maintaining fixed core/shell ratio

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The fabrication and thermal enthalpy regulation of phase change materials (PCMs) microcapsules have been researched. Methyl hexadecanoate (MH) melting at about 29 °C was used as PCMs core and encapsulated in silica shell microcapsules by sol–gel method. Based on a fixed core/shell ratio, a series of MH/silica PCMs microcapsules were prepared, and cetyl trimethyl ammonium bromide (CTAB) was used as emulsifier. The morphologies of PCMs microcapsules were studied by scanning electron microscopy. The Fourier transform infrared spectroscopy results exhibited that there was only physical interaction between silica and MH core shell. The heat storage capability and good thermostability of PCMs microcapsules were characterized by differential scanning calorimetry and thermogravimetric analysis. The heating cyclic tests showed that MH in the microcapsules had an outstanding long-term performance. From the results, it was found that the decrease in CTAB content (from 0.60 to 0.03 g) promoted effectively the melting enthalpy of PCMs microcapsules from 18.08 to 71.45 J g−1 with the same core/shell ratio. It provides a promising candidate for the preparation of PCMs microcapsules with adjustable enthalpy and popular price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Manoj Kumar P, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136:121–32.

    Article  CAS  Google Scholar 

  2. Singh S, Gaikwad KK, Lee M, Lee YS. Microwave-assisted micro-encapsulation of phase change material. J Therm Anal Calorim. 2018;131:2187–95.

    Article  CAS  Google Scholar 

  3. Sarı A, Karaipekli A, Kaygusuz K. Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage. Int J Energy Res. 2008;32:154–60.

    Article  Google Scholar 

  4. Ghadim HB, Shahbaz K, Al-Shannaq R, Farid MM. Binary mixtures of fatty alcohols and fatty acid esters as novel solid-liquid phase change materials. Int J Energy Res. 2019;43:8536–47.

    CAS  Google Scholar 

  5. Methaapanon R, Kornbongkotmas S, Ataboonwongse C, Soottitantawat A. Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process. Powder Technol. 2020;361:910–6.

    Article  CAS  Google Scholar 

  6. Saeed RMR. Advancement in thermal energy storage using phase change materials. 2018.

  7. Zhang H, Zhang L, Li Q, Huang C, Guo H, Xiong L, Chen X. Preparation and characterization of methyl palmitate/palygorskite composite phase change material for thermal energy storage in buildings. Constr Build Mater. 2019;226:212–9.

    Article  CAS  Google Scholar 

  8. Saeed RM, Schlegel JP, Castano C, Sawafta R. Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets. J Energy Storage. 2018;15:91–102.

    Article  Google Scholar 

  9. Patel JH, Darji PH, Qureshi MN. Phase change material with thermal energy storage systems and its applications: a systematic review. Indian J Sci Technol. 2017;10:1–10.

    Google Scholar 

  10. Saeed RM, Schlegel JP, Castano C, Sawafta R, Kuturu V. Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM). J Energy Storage. 2017;13:418–24.

    Article  Google Scholar 

  11. Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conv Manag. 2004;45:263–75.

    Article  CAS  Google Scholar 

  12. Shukla A, Sharma A, Kant K. Solar greenhouse with thermal energy storage: a review. Curr Sustain Renew Energy Rep. 2016;3:58–66.

    Google Scholar 

  13. Prajapati DG, Kandasubramanian B. A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev. 2019;60:1–31.

    Google Scholar 

  14. Huang X, Zhu CQ, Lin YX, Fang GY. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review. Appl Therm Eng. 2019;147:841–55.

    Article  Google Scholar 

  15. Jayalath A, San Nicolas R, Sofi M, Shanks R, Ngo T, Aye L, Mendis P. Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Constr Build Mater. 2016;120:408–17.

    Article  Google Scholar 

  16. Bijarchi MA, Kowsary F. Inverse optimization design of an impinging co-axial jet in order to achieve heat flux uniformity over the target object. Appl Therm Eng. 2018;132:128–39.

    Article  Google Scholar 

  17. Jurkowska M, Szczygiel I. Review on properties of microencapsulated phase change materials slurries (mPCMS). Appl Therm Eng. 2016;98:365–73.

    Article  CAS  Google Scholar 

  18. Lu S, Xing J, Zhang Z, Jia G. Preparation and characterization of polyurea/polyurethane double-shell microcapsules containing butyl stearate through interfacial polymerization. J Appl Polym Sci. 2011;121:3377–83.

    Article  CAS  Google Scholar 

  19. Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43.

    Article  CAS  Google Scholar 

  20. Silakhori M, Naghavi M, Metselaar H, Mahlia T, Fauzi H, Mehrali M. Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials. 2013;6:1608–20.

    Article  Google Scholar 

  21. Malekipirbazari M, Sadrameli SM, Dorkoosh F, Sharifi H. Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications. Int J Energy Res. 2014;38:1492–500.

    Article  CAS  Google Scholar 

  22. Yin D, Jia Y, Chen J, Zhang B. Design of microencapsulated phase change material by one-step swelling polymerization in Pickering emulsion. J Mater Sci. 2018;53:7249–57.

    Article  CAS  Google Scholar 

  23. Sarı A, Alkan C, Kahraman Döğüşcü D, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2014;126:42–50.

    Article  Google Scholar 

  24. Wang LY, Tsai PS, Yang YM. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion. J Microencapsul. 2008;23:3–14.

    Article  Google Scholar 

  25. Luo RL, Wang SF, Wang TY, Zhu CY, Nomura T, Akiyama T. Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation. Energy Build. 2015;108:373–80.

    Article  Google Scholar 

  26. Zhang ZJ, Wang JX, Tang X, Liu Y, Han Z, Chen Y. Comparison study between mesoporous silica nanoscale microsphere and active carbon used as the matrix of shape-stabilized phase change material. Sci Rep. 2019;9:1–10.

    Google Scholar 

  27. Wan X, Chen C, Tian S, Guo B. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage. J Energy Storage. 2020;28:101276.

    Article  Google Scholar 

  28. Gao F, Wang X, Wu D. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Sol Energy Mater Sol C. 2017;168:146–64.

    Article  Google Scholar 

  29. Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J. 2010;163:154–9.

    Article  CAS  Google Scholar 

  30. Wan X, Su L, Guo B. Design and preparation of novel shapeable PEG/SiO2/AA shape-stabilized phase change materials based on double-locked network with enhanced heat storage capacity for thermal energy regulation and storage. Powder Technol. 2019;353:98–109.

    Article  CAS  Google Scholar 

  31. Li J, Du X, Zheng N, Xu L, Xu J, Li S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloid Surf B Biointerfaces. 2016;141:374–81.

    Article  CAS  Google Scholar 

  32. Han L, Chen Q, Wang Y, Gao C, Che S. Synthesis of amino group functionalized monodispersed mesoporous silica nanospheres using anionic surfactant. Microporous Mesoporous Mat. 2011;139:94–103.

    Article  CAS  Google Scholar 

  33. Yang H, Feng L, Wang C, Zhao W, Li X. Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2 composites. Eur Polym J. 2012;48:803–10.

    Article  CAS  Google Scholar 

  34. Liu W, Guo R. The interaction between morin and CTAB aggregates. J Colloid Interface Sci. 2005;290:564–73.

    Article  CAS  Google Scholar 

  35. Sanchez-Silva L, Lopez V, Cuenca N, Valverde JL. Poly(urea-formaldehyde) microcapsules containing commercial paraffin: in situ polymerization study. Colloid Polym Sci. 2018;296:1449–57.

    Article  CAS  Google Scholar 

  36. Konuklu Y, Paksoy HO, Unal M, Konuklu S. Microencapsulation of a fatty acid with Poly (melamine–urea–formaldehyde). Energy Conv Manag. 2014;80:383–90.

    Article  Google Scholar 

  37. Hussain SI, Kalaiselvam S. Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage. J Therm Anal Calorim. 2020;140:133–47.

    Article  CAS  Google Scholar 

  38. Xu R, Xia XM, Wang W, Yu D. Infrared camouflage fabric prepared by paraffin phase change microcapsule with Good thermal insulting properties. J Therm Anal Calorim. 2020;591:124519.

    CAS  Google Scholar 

  39. Chen YH, Liu Y, Wang ZH. Preparation and Characteristics of Microencapsulated Lauric Acid as Composite Thermal Energy Storage Materials. Mater Sci Medzg. 2020;26:88–93.

    Article  Google Scholar 

  40. Xu D, Yang R. Efficient preparation and characterization of paraffin-based microcapsules by emulsion polymerization. J Appl Polym Sci. 2019;136:1–10.

    Google Scholar 

  41. Meng Z, Xue C, Zhang Q, Yu X, Xi K, Jia X. Preparation of highly monodisperse hybrid silica nanospheres using a one-step emulsion reaction in aqueous solution. Langmuir. 2009;25:7878–7873.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science foundation of China (Grant No. 51503006), State Key Laboratory of Chemical Engineering (No. SKL-ChE-19A01) and Beijing Natural Science Committee-Beijing Education Committee joint Foundation (KZ201910011012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Chen, C., Zhang, H. et al. Thermal enthalpy regulation of methyl hexadecanoate/silica microcapsules with CTAB as emulsifier maintaining fixed core/shell ratio. J Therm Anal Calorim 147, 3033–3042 (2022). https://doi.org/10.1007/s10973-021-10665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10665-x

Keywords

Navigation