Skip to main content
Log in

Performance evaluation and optimization of flattened microchannel heat sinks for the electronic cooling application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study introduces a microchannel heat sink (MCHS) with a new geometry entitled as flattened, which is used to dissipate heat flux form high heat flux generation devices and evaluates its hydrothermal performance. Three-dimensional conjugate heat transfer problem with the assumptions of laminar and steady-state fluid flow has been solved numerically, based on finite volume method. Silicon and pure water with temperature-independent thermophysical properties form the solid part of the heat sink and the coolant, respectively. The performance of three geometric designs of flattened cross-sectional MCHS including a simple single-layer heat sink (Design-A), a heat sink with an adjustable horizontal separation plate (Design-B), and a double-layer MCHS with truncated upper channels (Design-C), is evaluated based on the changes of six effective parameters in the problem including the number of microchannels (N), wall thickness (Ww), thickness of the separation plate (δ), vertical position of the separation plate (H1), velocity ratio (VR), and the length ratio (LR), and under the thermal and hydrodynamic conditions of a uniform heat flux and four different pumping powers. Creating the lowest thermal resistance and the most uniform temperature distribution are the criteria for selecting the optimal designs. The results show that Design-C with the specifications of N = 72, Ww = 56 µm, δ = 25 µm, H1 = 300 µm, VR = 0.7, and LR = 0.7 has the best performance among the all cases by creating the thermal resistance of 0.1333 kW−1, which also indicates a \(7.9\%\) performance improvement over similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A base :

Bottom face area affected by heat flux (\(\upmu {\text{m}}^{2}\))

A C :

Cross-sectional area of microchannels (\(\upmu {\text{m}}^{2}\))

C P :

Specific heat capacity (\({\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1}\))

H :

Height of the heat sink (\(\upmu {\text{m}}\))

H 1 :

Height for the lower microchannels (\(\upmu {\text{m}}\))

H 2 :

Height for the upper microchannels (\(\upmu {\text{m}}\))

H C :

Total height of the microchannels (\(\upmu {\text{m}}\))

k :

Thermal conductivity coefficient (\({\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1}\))

L :

Length of the heat sink (mm)

L 2 :

Length of the top row of microchannels (mm)

L R :

Length ratio (–)

n :

Normal direction to the boundary

N :

Number of microchannels (–)

P :

Static pressure (kPa)

ΔP :

Pressure drop (kPa)

Po:

Poiseuille number (–)

\(q_{{\text{w}}}^{{\prime \prime }}\) :

Heat flux applied to bottom face of the heat sink (\({\text{W}}\;{\text{cm}}^{ - 2}\))

R th :

Thermal resistance (\({\text{kW}}^{ - 1}\))

T :

Temperature (K or °C)

T in :

Temperature of inlet flow (K or °C)

T max :

Maximum temperature (K or °C)

T min :

Minimum temperature (K or °C)

V :

Fluid velocity (\({\text{ms}}^{ - 1}\))

V 1, V 2 :

Velocity in lower and upper channels (\({\text{ms}}^{ - 1}\))

V ave :

Average velocity (\({\text{ms}}^{ - 1}\))

V R :

Velocity ratio (–)

W :

Width of the heat sink (\(\upmu {\text{m}}\))

W C :

Width of the microchannels (\(\upmu {\text{m}}\))

W d :

Width of the computational domain (\(\upmu {\text{m}}\))

W w :

Wall thickness (\(\upmu {\text{m}}\))

u, v, w :

Velocity components in x, y, z directions (\({\text{ms}}^{ - 1}\))

x, y, z :

Cartesian coordinates

δ :

Thickness of the separation plate (\(\upmu {\text{m}}\))

δ 1 :

Thickness of the bottom wafer of heat sink (\(\upmu {\text{m}}\))

δ 2 :

Thickness of the top wafer of heat sink (\(\upmu {\text{m}}\))

µ :

Dynamic viscosity (Pa s)

ρ :

Density (\({\text{kg}}\;{\text{m}}^{ - 3}\))

Ω:

Pumping power (W

1, 2:

Lower channel and upper channel

f:

Fluid

in:

Inlet

min, max:

Minimum and maximum

s:

Solid

References

  1. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Article  Google Scholar 

  2. Al-Zaidi AH, Mahmoud MM, Karayiannis TG. Effect of aspect ratio on flow boiling characteristics in microchannels. Int J Heat Mass Transf. 2021;164:120587.

    Article  CAS  Google Scholar 

  3. Dai H, Chen W, Cheng Q, Liu Y, Dong X. Analysis of thermo-hydraulic characteristics in the porous-wall microchannel with microencapsulated phase change slurry. Int J Heat Mass Transf. 2021;165:120634.

    Article  Google Scholar 

  4. Al-Baghdadi MAS, Noor ZM, Zeiny A, Burns A, Wen D. CFD analysis of a nanofluid-based microchannel heat sink. Therm Sci Eng Prog. 2020;20:100685.

    Article  Google Scholar 

  5. Mohammed H, Gunnasegaran P, Shuaib N. Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink. Int Commun Heat Mass Transfer. 2011;38(4):474–80.

    Article  Google Scholar 

  6. Sui Y, Teo C, Lee PS, Chew Y, Shu C. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53(13–14):2760–72.

    Article  CAS  Google Scholar 

  7. Peng Y, Yang X, Li Z, Li S, Cao B. Numerical simulation of cooling performance of heat sink designed based on symmetric and asymmetric leaf veins. Int J Heat Mass Transf. 2021;166:120721.

    Article  Google Scholar 

  8. Deng D, Chen L, Chen X, Pi G. Heat transfer and pressure drop of a periodic expanded-constrained microchannels heat sink. Int J Heat Mass Transf. 2019;140:678–90.

    Article  Google Scholar 

  9. Jing D, Song S, Pan Y, Wang X. Size dependences of hydraulic resistance and heat transfer of fluid flow in elliptical microchannel heat sinks with boundary slip. Int J Heat Mass Transf. 2018;119:647–53.

    Article  CAS  Google Scholar 

  10. Ermagan H, Rafee R. Effect of pumping power on the thermal design of converging microchannels with superhydrophobic walls. Int J Therm Sci. 2018;132:104–16.

    Article  Google Scholar 

  11. Japar WMAA, Sidik NAC, Mat S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transf. 2018;99:62–81.

    Article  Google Scholar 

  12. Vasilev M, Abiev RS, Kumar R. Effect of microchannel heat sink configuration on the thermal performance and pumping power. Int J Heat Mass Transf. 2019;141:845–54.

    Article  Google Scholar 

  13. Das R, Akay B, Singla RK, Singh K. Application of artificial bee colony algorithm for inverse modelling of a solar collector. Inverse Probl Sci Eng. 2017;25(6):887–908.

    Article  Google Scholar 

  14. Das R, Mishra SC, Ajith M, Uppaluri R. An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J Quant Spectrosc Radiat Transf. 2008;109(11):2060–77.

    Article  CAS  Google Scholar 

  15. Das R, Prasad D. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol Comput. 2015;23:27–39.

    Article  Google Scholar 

  16. Das R. A simplex search method for a conductive–convective fin with variable conductivity. Int J Heat Mass Transf. 2011;54(23–24):5001–9.

    Article  Google Scholar 

  17. Kundu B, Das R, Wankhade PA, Lee K-S. Heat transfer improvement of a wet fin under transient response with a unique design arrangement aspect. Int J Heat Mass Transf. 2018;127:1239–51.

    Article  Google Scholar 

  18. Bejan A. Street network theory of organization in nature. J Adv Transp. 1996;30(2):85–107.

    Article  Google Scholar 

  19. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf. 1997;40(4):799–816.

    Article  Google Scholar 

  20. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transf. 2000;43(12):2101–15.

    Article  Google Scholar 

  21. Chen L, Yang A, Xie Z, Sun F. Constructal entropy generation rate minimization for cylindrical pin–fin heat sinks. Int J Therm Sci. 2017;111:168–74.

    Article  Google Scholar 

  22. Hajabdollahi H. Multi-objective optimization of plate fin heat exchanger using constructal theory. Int Commun Heat Mass Transf. 2019;108:104283.

    Article  Google Scholar 

  23. Chen L, Yang A, Feng H, Ge Y, Xia S. Constructal design progress for eight types of heat sinks. Sci China Technol Sci. 2020;63:1–33.

    CAS  Google Scholar 

  24. Lucia U, Fino D, Grisolia G. Thermoeconomic analysis of Earth system in relation to sustainability: a thermodynamic analysis of weather changes due to anthropic activities. J Therm Anal Calorim. 2020;1–7.

  25. Zhu Q, Chang K, Chen J, Zhang X, Xia H, Zhang H et al. Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs. 2020.

  26. Chamoli S, Lu R, Chen H, Cheng Y, Yu P. Numerical optimization of design parameters for a modified double-layer microchannel heat sink. Int J Heat Mass Transf. 2019;138:373–89.

    Article  Google Scholar 

  27. Shi X, Li S, Mu Y, Yin B. Geometry parameters optimization for a microchannel heat sink with secondary flow channel. Int Commun Heat Mass Transf. 2019;104:89–100.

    Article  Google Scholar 

  28. Shen H, Wang C-C, Xie G. A parametric study on thermal performance of microchannel heat sinks with internally vertical bifurcations in laminar liquid flow. Int J Heat Mass Transf. 2018;117:487–97.

    Article  Google Scholar 

  29. Yang M, Cao B-Y. Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels. Appl Therm Eng. 2019;159:113896.

    Article  Google Scholar 

  30. Chai L, Wang L, Bai X. Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls—part 1: local fluid flow and heat transfer characteristics. Int J Heat Mass Transf. 2018;127:1124–37.

    Article  CAS  Google Scholar 

  31. Chai L, Wang L, Bai X. Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls—part 2: average fluid flow and heat transfer characteristics. Int J Heat Mass Transf. 2019;128:634–48.

    Article  Google Scholar 

  32. Wang G, Qian N, Ding G. Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int J Heat Mass Transf. 2019;136:597–609.

    Article  Google Scholar 

  33. Vafai K, Zhu L. Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int J Heat Mass Transf. 1999;42(12):2287–97.

    Article  CAS  Google Scholar 

  34. Li J, Peterson G. Geometric optimization of a micro heat sink with liquid flow. IEEE Trans Compon Packag Technol. 2006;29(1):145–54.

    Article  Google Scholar 

  35. Wang Z-H, Wang X-D, Yan W-M, Duan Y-Y, Lee D-J, Xu J-L, et al. Multi-parameters optimization for microchannel heat sink using inverse problem method. Int J Heat Mass Transf. 2011;54(13–14):2811–9.

    Article  Google Scholar 

  36. Zografos AI, Martin WA, Sunderland JE. Equations of properties as a function of temperature for seven fluids. Comput Methods Appl Mech Eng. 1987;61(2):177–87.

    Article  Google Scholar 

  37. Yeh L. Review of heat transfer technologies in electronic equipment. 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajmohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayatollahi, S.M., Ahmadpour, A. & Hajmohammadi, M.R. Performance evaluation and optimization of flattened microchannel heat sinks for the electronic cooling application. J Therm Anal Calorim 147, 3267–3281 (2022). https://doi.org/10.1007/s10973-021-10589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10589-6

Keywords

Navigation