Skip to main content
Log in

Thermal conductivity of hybrid multilayer graphene-fiber carbon membranes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hybrid graphemne-fiber systems could present an alternative for various industrial applications in need of large area graphene sheets. One way to produce these carbon-based structures is by subjecting an aqueous polyvinyl alcohol solution containing sodium chloride to centrifugal spinning under high humidity conditions. The developed polymer fibers are then subjected to a dehydration and carbonization process to promote the formation of the hybrid carbon structure. Potential applications of this material are highly dependent upon their conducting properties. In this work we analyzed the effect of the NaCl content and humidity conditions during the spinning process and ultimate thermal conductivity of the resultant hybrid graphene-fiber carbon systems. Results show an optimum NaCl added to the carbon precursor solution and spun at a high relative humidity (around 70%) promote the development of veils of graphene oxide multilayer that interconnect with produced fibers. We applied for the first time a thermographic method to determine the thermal conductivity of carbon mats. The thermal conductivity of the hybrid fibers increases as graphene multilayers veils expand between carbon fibers, to reach values up to 28 W m K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Park SJ. Carbon fibers. 2nd ed. Dordrecht Heidelberg: Springer; 2015.

    Google Scholar 

  2. Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon. 1998;36(4):3455362.

    Article  Google Scholar 

  3. Lott P, Stollenwerk J, Wissenbach K. Laser-based production of carbon fibers. J Laser Appl. 2015;27(S2):S29106.

    Article  Google Scholar 

  4. Bol’shakova NV, Kostenok OM, Il’in AM, Kostyukhin VI. Thermal conductivity of carbon-graphite fibers and fabrics. Refractories. 1990;31:1990524.

    Google Scholar 

  5. Adams PM, Katzman HA, Rellick GS, Stupian GW. Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel. Carbon. 1998;36:233–45.

    Article  CAS  Google Scholar 

  6. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S. Thermophysical properties of densified pitch-based carbon/carbon materials—I. Unidirectional composites. Carbon. 2006;44:480–7.

    Article  CAS  Google Scholar 

  7. Balandin A. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569–81.

    Article  CAS  Google Scholar 

  8. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  CAS  Google Scholar 

  9. Lee JU, Yoon D, Kim H, Lee SW, Cheong H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B. 2011;83:081419(R).

    Article  Google Scholar 

  10. Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.

    Article  CAS  Google Scholar 

  11. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.

    Article  CAS  Google Scholar 

  12. Akia M, Cremar L, Chipara M, Munoz E, Cortez H, De Santiago H, Rodriguez-Macias FJ, Vega-Cantú YI, Arandiyan H, Sun H, Lodge TP, Mao Y, Lozano K. In Situ production of graphene−fiber hybrid structures. ACS Appl Mater Interfaces. 2017;9:25474–80.

    Article  CAS  Google Scholar 

  13. Greppmair A, Stoib B, Saxena N, Gerstberger C, Müller-Buschbaum P, Stutzmann M, Brandt MS. Measurement of the in-plane thermal conductivity by steady-state infrared thermography. Rev Sci Instrum. 2017;88:044903.

    Article  Google Scholar 

  14. Piraux L, Issi JP, Coopmans P. Apparatus for thermal conductivity measurements on thin fibers. Measurement. 1987;5(1):2–5.

    Article  Google Scholar 

  15. Wang ZL, Tang DW, Zhang WG. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber. J Phys D Appl Phys. 2007;40:4686–90.

    Article  CAS  Google Scholar 

  16. Parker WJ, Jenkins RJ, Butler CP, Abbot GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1964;32:1679–84.

    Article  Google Scholar 

  17. Gallego NC, Edie DD, Nysten B, Issi JP, Treleaven JW, Deshpande GV. The thermal conductivity of ribbon-shaped carbon fibers. Carbon. 2000;38:1003–10.

    Article  CAS  Google Scholar 

  18. Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements. J Phys Chem Ref Data. 1972;1:279.

    Article  CAS  Google Scholar 

  19. Barakat NAM, Kanjwal MA, Sheikh FA, Kim HY. Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: novel strategy in the electrospinning process. Polymer. 2009;50(18):438–4396.

    Article  Google Scholar 

  20. Leberman R, Soper AK. Effect of high salt concentrations on water structure. Nature. 1995;378:364–6.

    Article  CAS  Google Scholar 

  21. Bhattacharya A, Ray P. Studies on surface tension of poly(vinyl alcohol): effect of concentration, temperature, and addition of chaotropic agents. J Appl Polym Sci. 2004;93:122–30.

    Article  CAS  Google Scholar 

  22. Speight JG. Environmental inorganic chemistry for engineer. New York: Elsevier; 2017. p. 140.

    Google Scholar 

  23. Von Plessen H. Sodium sulphates. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  24. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000).

  25. Moon I, Lee J, Ruoff R, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010;1:73.

    Article  Google Scholar 

  26. Kaniyoor A, Ramaprabhu S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012;2:032183.

    Article  Google Scholar 

  27. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–107.

    Article  CAS  Google Scholar 

  28. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401.

    Article  CAS  Google Scholar 

  29. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57.

    Article  CAS  Google Scholar 

  30. Wu JB, Lin ML, Cong X, Liu HN, Tan PH. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. 2018;47:1822.

    Article  CAS  Google Scholar 

  31. Araujo PT, Terrones M, Dresselhaus MS. Defects and impurities in graphene-like materials. Mater Today. 2012;15(3):98–109.

    Article  CAS  Google Scholar 

  32. Mu X, Wu X, Zhang T, Go DB, Lou T. Thermal transport in graphene oxide—from ballistic extreme to amorphous limit. Sci Rep. 2015;4:3909.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge to Jose Campos, Maria Luisa Ramón and Patricia Altuzar for the technical assistance in SEM and XRD samples characterization. This project was supported by DGAPA-UNAM under Grants Nos. PAPIIT IN117016 and IN109019. Authors also gratefully acknowledge National Science Foundation under PREM Grant DMR 1523577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Nava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, J., Estrada, A., Balbuena Ortega, A. et al. Thermal conductivity of hybrid multilayer graphene-fiber carbon membranes. J Therm Anal Calorim 147, 2115–2123 (2022). https://doi.org/10.1007/s10973-021-10587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10587-8

Keywords

Navigation