Skip to main content
Log in

Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Single-phase nanofluid heat and mass transfer futures over swirling cylinder with the impact of Cattaneo–Christov heat flux and slip effects is studied in this analysis. The effects thermophoresis, thermal radiation, Brownian motion and chemical reaction are also considered and the motion of the fluid is because of the torsional motion of the cylinder and these parameters. Suitable similarity transformations are implemented to simplify the fluid equations from partial differential equations to ordinary differential equations. The most powerful finite element technique is applied to solve the subsequent equations along with boundary conditions. Variations in the scatterings of swirling velocity, axial velocity, concentration and temperature with several pertinent parameters are portrayed through plots. Nusselt number, both components of skin friction coefficient and Sherwood number values are also examined in detail and are revealed in tables. Temperature sketches diminish in nanofluid region with rising values of heat flux relaxation number. It is detected that the nanofluids temperature deteriorates with augmenting values of temperature slip parameter. The present numerical code is validated with existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Abbreviations

C f :

Skin friction coefficient

k f :

Thermal conductivity of basefluid

Nt :

Thermophoretic Parameter

C :

Ambient fluid concentration

T w :

Wall constant temperature

T :

Fluid temperature

q w :

Wall heat flux

f :

Dimensionless stream function

K * :

Mean absorption coefficient

Shx :

Sherwood number

(u, v):

Velocity components in x- and y-axis

τ w :

Shear stress

M:

Magnetic field parameter

B 0 :

Strength of Magnetic Field

(x, y):

Direction along and perpendicular to the cylinder

V :

Suction parameter

C r :

Chemical reaction parameter

MHD:

Magnetohydrodynamics

Nb:

Brownian motion Parameter

Nux :

Nusselt number

Re :

Local Reynolds number

u :

Velocity of mainstream

T :

Ambient temperature

C :

Fluid concentration

J w :

Wall mass flux

uw :

Velocity of the wall

σ * :

Stefan-Boltzmann constant

Pr:

Prandtl number

R :

Radiation parameter

Le:

Lewis number

D m :

Diffusion coefficient

U:

Composite velocity

CW:

Concentration at the wall

α :

Thermal diffusivity of base fluid

μ :

Fluid viscosity

S :

Dimensionless nanoparticle volume fraction

θ :

Dimensionless temperature

σ :

Electrical conductivity

λ 1 :

Fluid relaxation time

B:

Concentration slip number

v :

Kinematic viscosity

ρ p :

Nanoparticle mass density

η :

Similarity variable

λ :

Velocity Slip parameter

ξ :

Thermal slip parameter

λ 2 :

Thermal relaxation time

γ :

Thermal relaxation parameter

:

Condition far away from cone surface

f :

Base fluid

hnf:

Hybrid nanofluid

nf:

Nanofluid

:

Differentiation with respect to ɳ

Reference

  1. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nano-tube suspensions. Appl Phys. 2001;79:2252–4.

    CAS  Google Scholar 

  2. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Google Scholar 

  3. Sudarsana Reddy P, Chamkha AJ. Heat and mass transfer characteristics of Al2O3-water and Ag-water nanofluid through porous media over a vertical cone with heat generation/absorption. J Porous Media. 2017;20:1–17.

    Google Scholar 

  4. Sheremet MA, Pop I, Rosca AV. The influence of thermal radiation on unsteady free convection in inclined enclosures filled by a nanofluid with sinusoidal boundary conditions. Int J Numer Methods Heat Fluid Flow. 2018;28(8):1738–53.

    Google Scholar 

  5. Munawar S, Saleem N, Mehmood A. Entropy production in the flow over a swirling stretchable cylinder. Thermophys Aeromechanics. 2016;23(3):435–44. https://doi.org/10.1134/s0869864316030136.

    Article  Google Scholar 

  6. Deylami HM, Amanifard N, Hosseininezhad SS, Dolati F. Numerical investigation of the wake flow control past a circular cylinder with electro-hydrodynamic actuator. Eur J Mech B Fluids. 2017;66:71–80.

    Google Scholar 

  7. Sheikholeslami M. Influence of lorentz forces on nanofluid flow in a porous cylinder considering darcy model. J Mol Liq. 2017;225:903–12.

    CAS  Google Scholar 

  8. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.

    CAS  Google Scholar 

  9. Selimefendigil F, Ismael MA, Chamkha AJ. Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int J Mech Sci. 2017;124–125:95–108.

    Google Scholar 

  10. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017;132(2):1189–200.

    Google Scholar 

  11. Azam M, Khan M, Alshomrani AS. Unsteady radiative stagnation point flow of MHD carreau nanofluid over expanding/contracting cylinder. Int J Mech Sci. 2017;130:64–73.

    Google Scholar 

  12. Dinarvand S, Hosseini R, Pop I. Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by tiwari-das nanofluid model. Powder Technol. 2017;311:147–56.

    CAS  Google Scholar 

  13. Nourazar SS, Hatami M, Ganji DD, Khazayinejad M. Thermal-flow boundary layer analysis of nanofluid over a porous stretching cylinder under the magnetic field effect. Powder Technol. 2017;317:310–9.

    CAS  Google Scholar 

  14. Hayat T, Khan MI, Waqas M, Alsaedi A. Newtonian heating effect in nanofluid flow by a permeable cylinder. Results Phys. 2017;7:256–62.

    Google Scholar 

  15. Hussain A, Malik MY, Salahuddin T, Bilal S, Awais M. Combined effects of viscous dissipation and Joule heating on MHD sisko nanofluid over a stretching cylinder. J Mol Liq. 2017;231:341–52.

    CAS  Google Scholar 

  16. Zeeshan A, Maskeen MM, Mehmood OU. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-darcian forchheimer porous media. Neural Comput Appl. 2017;30(11):3479–89.

    Google Scholar 

  17. Ramzan M, Sheikholeslami M, Chung JD, Shafee A. Melting heat transfer and entropy optimization owing to carbon nanotubes suspended Casson nanoliquid flow past a swirling cylinder-a numerical treatment. AIP Adv. 2018;8(11):115130. https://doi.org/10.1063/1.5064389.

    Article  CAS  Google Scholar 

  18. Javed MF, Khan MI, Khan NB, Muhammad R, Rehman MU, Khan SW, Khan TA. Axisymmetric flow of casson fluid by a swirling cylinder. Results Phys. 2018;9:1250–5.

    Google Scholar 

  19. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper – water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2018;135(2):1171–84.

    Google Scholar 

  20. Usman M, Soomro FA, Ul Haq R, Wang W, Defterli O. Thermal and velocity slip effects on casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. Int J Heat Mass Transf. 2018;122:1255–63.

    CAS  Google Scholar 

  21. Karbasifar B, Akbari M, Toghraie D. Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int J Heat Mass Transf. 2018;116:1237–49.

    CAS  Google Scholar 

  22. Dogonchi AS, Sheremet MA, Pop I, Ganji DD. MHD natural convection of Cu/H2O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int J Numer Methods Heat Fluid Flow. 2018;28(12):2979–96.

    Google Scholar 

  23. Nagendramma V, Leelarathnam A, Raju CSK, Shehzad SA, Hussain T. Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder. Results Phys. 2018;9:23–32.

    Google Scholar 

  24. Abbas N, Saleem S, Nadeem S, Alderremy AA, Khan AU. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 2018;9:1224–32.

    Google Scholar 

  25. Yousefi M, Dinarvand S, Eftekhari Yazdi M, Pop I. Stagnation-point flow of an aqueous titania - copper hybrid nanofluid toward a wavy cylinder. Int J Numer Meth Heat Fluid Flow. 2018;28(7):1716–35.

    Google Scholar 

  26. Selimefendigil F, Öztop HF. Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder. Int J Heat Mass Transf. 2018;121:233–45.

    CAS  Google Scholar 

  27. Shirazi M, Shateri A, Bayareh M. Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder. J Therm Anal Calorim. 2018;133(2):1061–73.

    CAS  Google Scholar 

  28. Alizadeh R, Karimi N, Arjmandzadeh R, Mehdizadeh A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018;135(1):489–506.

    Google Scholar 

  29. Rosca NC, Rosca AV, Pop I, Merkin JH. Nanofluid flow by a permeable stretching/shrinking cylinder. Heat Mass Transf. 2019. https://doi.org/10.1007/s00231-019-02730-x.

    Article  Google Scholar 

  30. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int J Mech Sci. 2019;150:637–55.

    Google Scholar 

  31. DogonchiHashim AS. Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transf. 2019;130:320–32.

    Google Scholar 

  32. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):965–82.

    CAS  Google Scholar 

  33. Shehzad SA, Khan SU, Abbas Z, Rauf A. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects. Appl Math Mech. 2019;41(3):521–32.

    Google Scholar 

  34. Raju CSK, Sanjeevi P, Raju MC, Ibrahim SM, Lorenzini G, Lorenzini E. The flow of magnetohydrodynamic Maxwell nanofluid over a cylinder with Cattaneo-Christov heat flux model. Contin Mech Thermodyn. 2017;29(6):1347–63.

    CAS  Google Scholar 

  35. Dogonchi AS, Chamkha AJ, Seyyedi SM, Ganji DD. Radiative nanofluid flow and heat transfer between parallel disks with penetrable and stretchable walls considering Cattaneo-Christov heat flux model. Heat Transfer-Asian Res. 2018;47(5):735–53.

    Google Scholar 

  36. Rauf A, Shehzad SA, Abbas Z, Hayat T. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo-Christov double diffusion. Appl Math Mech. 2019;40(10):1471–86.

    Google Scholar 

  37. Li X, Khan AU, Khan MR, Nadeem S, Khan SU. Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo-christov heat flux model: existence of dual solution. Symmetry. 2019;11(9):1070.

    CAS  Google Scholar 

  38. Bhattacharyya A, Seth GS, Kumar R, Chamkha AJ. Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08644-4.

    Article  Google Scholar 

  39. Kumar KG, Reddy MG, Sudharani MVVNL, Shehzad SA, Chamkha AJ. Cattaneo-Christov heat diffusion phenomenon in Reiner-Philippoff fluid through a transverse magnetic field. Phys A. 2020;541:123330.

    Google Scholar 

  40. Shehzad SA, Reddy MG, Rauf A, Abbas Z. Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo-Christov theories over isolated rotating disk. Phys Scr. 2020;95(4):045207.

    CAS  Google Scholar 

  41. Rashad AM. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge. J Magn Magn Mater. 2017;422:25–31.

    CAS  Google Scholar 

  42. Rashad A. Unsteady nanofluid flow over an inclined stretching surface with convective boundary condition and anisotropic slip impact. Int J Heat Technol. 2017;35(1):82–90.

    Google Scholar 

  43. Ganesh Kumar K, Ramesh GK, Gireesha BJ, Rashad AM. On stretched magnetic flow of carreau nanofluid with slip effects and nonlinear thermal radiation. Nonlinear Eng. 2019;8(1):340–9.

    Google Scholar 

  44. El-Kabeir SMM, El-Zahar ER, Modather M, Gorla RSR, Rashad AM. Unsteady MHD slip flow of a ferrofluid over an impulsively stretched vertical surface. AIP Adv. 2019;9(4):045112.

    Google Scholar 

  45. Subbarayudu K, Suneetha S, Bala Anki Reddy P, Rashad AM. Framing the activation energy and binary chemical reaction on CNT’s with Cattaneo-Christov heat diffusion on maxwell nanofluid in the presence of nonlinear thermal radiation. Arab J Sci Eng. 2019;44(12):10313–25.

    CAS  Google Scholar 

  46. El-Zahar ER, Rashad AM, Seddek LF. The impact of sinusoidal surface temperature on the natural convective flow of a ferrofluid along a vertical plate. Mathematics. 2019;7(11):1014.

    Google Scholar 

  47. Alwawi FA, Alkasasbeh HT, Rashad AM, Idris R. MHD natural convection of sodium alginate casson nanofluid over a solid sphere. Results Phys. 2020;16:102818.

    Google Scholar 

  48. Nabwey HA, Khan WA, Rashad AM. Lie group analysis of unsteady flow of kerosene/cobalt ferrofluid past a radiated stretching surface with navier slip and convective heating. Mathematics. 2020;8(5):826.

    Google Scholar 

  49. Reddy SRR, Bala Anki Reddy P, Rashad AM. Activation energy impact on chemically reacting eyring-powell nanofluid flow over a stretching cylinder. Arab J Sci Eng. 2020;45(7):5227–42.

    CAS  Google Scholar 

  50. Khan WA, Rashad AM, El-Kabeir SMM, El-Hakiem AMA. Framing the MHD micropolar-nanofluid flow in natural convection heat transfer over a radiative truncated cone. Processes. 2020;8(4):379.

    CAS  Google Scholar 

  51. Ullah Z, Ashraf M, Rashad AM. Magneto-thermo analysis of oscillatory flow around a non-conducting horizontal circular cylinder. J Therm Anal Calorim. 2020;142(4):1567–78.

    CAS  Google Scholar 

  52. Alwawi FA, Alkasasbeh HT, Rashad A, Idris R. Heat transfer analysis of ethylene glycol-based casson nanofluid around a horizontal circular cylinder with MHD effect. Proc Inst Mech Eng Part C J Mech Eng Sci. 2020;234(13):2569–80.

    CAS  Google Scholar 

  53. Reddy S, Reddy PBA, Rashad A. Effectiveness of binary chemical reaction on magneto-fluid flow with Cattaneo-Christov heat flux model. Proc Inst Mech Eng Part C J Mech Eng Sci. 2020. https://doi.org/10.1177/0954406220950347.

    Article  Google Scholar 

  54. Ghalambaz M, Mehryan SAM, Hajjar A, Veismoradi A. Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium. Adv Powder Technol. 2020;31(3):954–66.

    Google Scholar 

  55. Ghalambaz M, Mehryan SAM, Mozaffari M, Hashem Zadeh SM, Saffari Pour M. Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder. Int J Heat Mass Transf. 2020;156:119792.

    Google Scholar 

  56. Mehryan SAM, Ghalambaz M, Sasani Gargari L, Hajjar A, Sheremet M. Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J Energy Storage. 2020;28:101236.

    Google Scholar 

  57. Ghalambaz M, Hashem Zadeh SM, Mehryan SAM, Pop I, Wen D. Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Appl Math Model. 2020;77:1936–53.

    Google Scholar 

  58. Alsabery AI, Hashim I, Hajjar A, Ghalambaz M, Nadeem S, Saffari Pour M. Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies. 2020;13(11):2942.

    CAS  Google Scholar 

  59. Sudarsan Reddy P, Prasada Rao DRV. Thermo-diffusion and diffusion–thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density temperature variation–finite element study. J Appl Fluid Mech. 2012;5:139–44.

    Google Scholar 

  60. Sreedevi P, Sudarsana Reddy P, Chamkha AJ. Heat and mass transfer analysis of nanofluid over linear and non- linear stretching surface with thermal radiation and chemical reaction. Powder Technol. 2017;315:194–204.

    CAS  Google Scholar 

  61. Jyothi K, Sudarsana Reddy P, Suryanarayana Reddy M. Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanofluid between rotating stretchable disks with convective boundary conditions. Powder Technol. 2018;331:326–37.

    CAS  Google Scholar 

  62. Sudarsana Reddy P, Chamkha AJ. Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water - based Alumina nanofluid. Int J Numer Meth Heat Fluid Flow. 2018;28:532–46.

    Google Scholar 

  63. Alebraheem J, Ramzan M. Flow of nanofluid with Cattaneo-Christov heat flux model. Appl Nanosci. 2019. https://doi.org/10.1007/s13204-019-01051-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Sudarsana Reddy or Ali J. Chamkha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.S., Sreedevi, P. & Chamkha, A.J. Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux. J Therm Anal Calorim 147, 3453–3468 (2022). https://doi.org/10.1007/s10973-021-10586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10586-9

Keywords

Navigation