Skip to main content
Log in

Light diffusing and flame-retardant polycarbonate modified by highly efficient and multifunctional organosilica microspheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polycarbonate (PC) is widely used as a matrix in light diffusing material due to its high transparency. To prepare a light diffusing material, PC is blended with microparticles to scatter the incoming light and create haze without suffering much detriment in light transmittance. It also becomes critical to endow light diffusing PC with concurrent flame retardancy to extend its advanced application. A highly efficient and multifunctional potassium sulfonate functionalized organosilica microspheres (OM-SO3K) were synthesized and employed to produce light diffusing and flame-retardant PC. When the addition of OM-SO3K was only 0.4 mass%, the transmittance and haze of the composite were 78.6% and 90.2%, respectively, while the limiting oxygen index was increased significantly to 37.5% and the V-0 rating of UL 94 test was attained. The flame-retardant mechanism was studied by the characterization of pyrolysis gas, TGA, cone calorimeter test and the analysis of charred residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tang A, Ding P, Song N, Tang S, Shi L, Zhao Y. Silicate micro-spheres modified with YPO4:Pr3+ particles: possessing light diffusion and blue-light down-conversion properties. Mater Lett. 2015;161:395–8.

    Article  CAS  Google Scholar 

  2. Ru Y, Zhang X, Wang L, Dai L, Yang W, Qiao J. Polymer composites with high haze and high transmittance. Polym Chem. 2015;6:6632–6.

    Article  CAS  Google Scholar 

  3. Hu J, Zhou Y, He M, Yang X. Novel multifunctional microspheres of polysiloxane@CeO2-PMMA: optical properties and their application in optical diffusers. Opt Mater. 2013;36:271–7.

    Article  CAS  Google Scholar 

  4. Song S, Sun Y, Lin Y, You B. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application. Appl Surf Sci. 2013;273:652–60.

    Article  CAS  Google Scholar 

  5. Kuo HP, Chuang MY, Lin CC. Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit. Powder Technol. 2009;192:116–21.

    Article  CAS  Google Scholar 

  6. Zhao Y, Ding P, Ba C, Tang A, Song N, Liu Y. Preparation of TiO2 coated silicate micro-spheres for enhancing the light diffusion property of polycarbonate composites. Displays. 2014;35:220–6.

    Article  CAS  Google Scholar 

  7. Dong X, Xiong Y, Chen G, Guo S. Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)(70/30) blend. Appl Optics. 2015;54:608–14.

    Article  CAS  Google Scholar 

  8. Kim HJ, Kim DW, Kim SW. Characteristics of optical diffusers for light-emitting diodes backlight unit prepared by melt-extrusion process. Jpn J Appl Phys. 2013;52:10–24.

    Google Scholar 

  9. Ouyang X, Li P, Chen D, Tang J. Light-diffusing materials for LED illumination applications: Comparing the effectiveness of two typical light-diffusing agents. J Appl Polym Sci. 2015;133:99–106.

    Google Scholar 

  10. Ohtsuka Y, Fujiguchi T, Oishi K. 1994;US 5352747A.

  11. Zhao Z, Qiu J, Xiong Y, Liu X, Shen J, Guo S. In-situ preparation of core-shell-like scatterers and their effects on optical and mechanical properties of PC-matrix light diffusing materials. Mater Des. 2017;115:355–63.

    Article  CAS  Google Scholar 

  12. Kong Q, Sun Y, Zhang C, Guan H, Zhang J, Wang DY, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748.

    Article  CAS  Google Scholar 

  13. He Q, Song L, Hu Y, Zhou S. Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. J Mater Sci. 2009;44:1308–16.

    Article  CAS  Google Scholar 

  14. Zhang J, Kong Q, Yang L, Wang DY. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 2016;18:3066–74.

    Article  CAS  Google Scholar 

  15. Kong Q, Wu T, Zhang H, Zhang Y, Zhang M, Si T, Yang L, Zhang J. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    Article  CAS  Google Scholar 

  16. Zhang J, Kong Q, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376–86.

    Article  CAS  Google Scholar 

  17. Zhong H, Wu D, Wei P, Jiang P, Li Q, Hao J. Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy. J Mater Sci. 2007;42:10106–12.

    Article  CAS  Google Scholar 

  18. Nodera A, Kanai T. Thermal decomposition behavior and flame retardancy of polycarbonate containing organic metal salts: effect of salt composition. J Appl Polym Sci. 2004;94:2131–9.

    Article  CAS  Google Scholar 

  19. Li Z, Yang R. Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (S-POSS)/polycarbonate composites. Polym Degrad Stabil. 2015;116:81–7.

    Article  CAS  Google Scholar 

  20. Tang A, Ding P, Zhao Y, Song N, Shi L. Optical and flame-retardant behavior of polycarbonate composites containing perfluorodecyltriethoxysilane-modified silicate microspheres. Chem Lett. 2015;44:442–4.

    Article  CAS  Google Scholar 

  21. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD. Direct Syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem Mater. 2000;12:2448–59.

    Article  CAS  Google Scholar 

  22. Yang Q, Liu J, Yang J, Kapoor MP, Inagaki S, Li C. Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. J Catal. 2004;228:265–72.

    Article  CAS  Google Scholar 

  23. Rác B, Molnár Á, Forgo P, Mohai M, Bertóti I. A comparative study of solid sulfonic acid catalysts based on various ordered mesoporous silica materials. J Mol Catal. 2006;244:46–57.

    Article  Google Scholar 

  24. Lu X, Yin Q, Xin Z, Zhang Z. Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chem Eng Sci. 2010;65:6471–7.

    Article  Google Scholar 

  25. Jiang DD, Yao Q, Mckinney MA, Wilkie CA. TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degrad Stabil. 1999;63:423–34.

    Article  CAS  Google Scholar 

  26. Cano-Serrano E, Blanco-Brieva G, Campos-Martin JM, Fierro JLG. Acid-functionalized amorphous silica by chemical grafting−quantitative oxidation of thiol groups. Langmuir. 2003;19:7621–7.

    Article  CAS  Google Scholar 

  27. Chen CW, Chen CY, Lin CL. Preparation of monodisperse poly(methyl methacrylate) microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. J Polym Res. 2011;18:587–94.

    Article  CAS  Google Scholar 

  28. Chen CW, Chen CY. Preparation of monodisperse polystyrene microspheres and optical performance of its diffusive-agent application. J Soc Inf Display. 2007;15:845–51.

    Article  CAS  Google Scholar 

  29. Wilson K, Lee AF, Macquarrie DJ, Clark JH. Structure and reactivity of sol–gel sulphonic acid silicas. Appl Catal A. 2002;228:127–33.

    Article  CAS  Google Scholar 

  30. Xiao D, Li Z, De Juan S, Gohs U, Wagenknecht U, Voit B, Wang DY. Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. J Therm Anal Calorim. 2016;125:321–9.

    Article  CAS  Google Scholar 

  31. Cayla A, Rault F, Giraud S, Salaün F, Fierro V, Celzard A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers. 2016;8:331.

    Article  Google Scholar 

  32. Yan L, Xu Z, Wang X. Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates. J Therm Anal Calorim. 2019;136:1563–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Project for Key Lab Guangdong High Property Green Eco-friendly Tire (2020B121202022) and the Project for Academician Workstation of Dongguan and Guangdong (2015B090904001). Please be assured that the work described is an original research. For further information, the work has not been published previously, and not under any consideration for publication elsewhere, in whole or in part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumei Liu.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Liu, S., Wirasaputra, A. et al. Light diffusing and flame-retardant polycarbonate modified by highly efficient and multifunctional organosilica microspheres. J Therm Anal Calorim 146, 2423–2433 (2021). https://doi.org/10.1007/s10973-021-10580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10580-1

Keywords

Navigation