Skip to main content
Log in

Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Globally, energy is a dynamic element that makes people's major energy demands. There are a variety of energies; the one that is stupendous potential is solar. Solar energy is an efficient problem solving one to eliminate pollution from the environment and water scarcity. This review article provides the accomplishments in the progress of the solar pond, solar desalination and integration of both the systems in the recent years. The solar pool is one of the thermal energy storing systems which perform as a huge solar radiation collector to capture and store sun’s rays. The accumulated heat in the solar pool is weighed as the low category thermal energy. Hence, to enhance the performance upgrades are mandatory. Initially, use of unique salts and various additives is studied. And then, ingenious empirical works and several layers for minimizing the thermal losses from the upper and lower layers are exhibited. Heat removal techniques from the heat storage zone and mathematical model analysis are discussed. In addition, solar desalination unit is one of the possibilities for the effective production of sweet water from any form of polluted water (marine, brackish and contaminated water). Solar still is a trouble-free device utilized by condensation and evaporation processes to improve the limpidity of the water with the utilization of solar energy. This work made an attempt to classify various still designs with the greater volume of production. And also it analyzes the new innovations and thermal energy transfer process to reach at positive judgment. Desalination system performance is low for conventional approach, as desalination plant efficiency is relative to inlet water temperature, to upgrade it the solar pond coupled to desalination unit. With the exploitation of brine concentration and recovery system and multi-stage flash, fins and flat plate collector helps to elevate the beneficial solar pond and desalination output. This comprehensive review will guide the imminent researchers who desire to accelerate the performance of the pond and desalination units further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Abbreviations

1D:

One-dimensional.

2D:

Two-dimensional.

3D:

Three-dimensional.

A:

Area of the pond (m−2).

AC:

Air-conditioning.

AD:

Adsorption desalination.

Aevp :

Evaporation pond surface area (m−2).

Ag :

Glass cover surface area (m−2).

AGMD:

Air gap membrane distillation.

AHT:

Absorption heat transformer.

Ap :

Surface area of the heat energy storage material (m−2).

Aw :

Surface area of salt water (m−2).

APP:

Axial piston pumps.

ARC:

Absorption refrigeration cycle.

BCRS:

Brine concentration recovery systems.

BHE:

Bottom heat exchanger.

BPNN:

Back-propagation neural network.

C.E.T:

Cylindrical electroconductivity temperature.

CCTSS:

Concentric circular tubular solar still.

CDP:

Combined desalination and electricity production.

CFC:

Chloro fluro carbons.

CFD:

Computational fluid dynamics.

CGOR:

Cogeneration gained output ratio.

CGOROD:

Cogeneration gained output ratio optimal design.

COP:

Co-efficient of performance.

CPC:

Compound parabolic concentrator.

CPCCCTSS:

Compound parabolic concentrator concentric circular tubular solar still.

Cpf :

Specific heat of air (J kg−1 °C−1).

CSP:

Cannalite solar pond.

CSPS:

Cylindrical solar pond scheme.

CVFEM:

Control volume finite element method.

DAQ:

Data acquisition system.

DB14:

Disperse blue 14.

DCMD:

Direct contact membrane distillation.

DR1:

Disperse red 1.

DWOD:

Distilled water optimal design.

EA:

Evolutionary algorithm.

ECGOR:

Exergy-based gained output ratio.

ECGOROD:

Exergy-based gained output ratio optimal design.

Econ-D :

Total heat energy used to produce sweet water at daytime.

Een :

Total heat energy entered the system through the glass cover in form of solar radiation.

Efw :

Evaporation rate from fresh water.

Eloss :

Total heat energy losses to the surrounding in the form of reflection, conduction and radiation in daytime.

EP:

Evaporation pond.

Ep :

Total energy consumed by the pump.

Ef :

Total energy consumed by the fan.

Estored :

Total energy stored in the system.

ETC:

Evacuated tube collector.

ETSC:

Evacuated solar tube collector.

EWH:

Electric water heater.

FCSP:

Floating collector solar pond.

FDM:

Finite difference method.

FODTS:

Fiber optic distributed temperature sensing.

FPC:

Flat plate collectors.

FR:

Flow ratio.

FVM:

Finite volume method.

GAC:

Granular activated carbon.

GSP:

Gel solar pond.

GT:

Cumulative total solar radiation on glass cover of still (kJ m−2 day−1).

h:

Heat transfer coefficient between air and glass (W m−2 °C−1).

hc :

Convective heat transfer co-efficient (W m−2 °C−1).

HCl:

Hydrochloric acid.

HDH:

Humidification–dehumidification.

HE:

Heat exchanger.

HEF:

Heat extraction fluid.

HEXG:

Heat exchanger in the gradient zone.

HEXL:

Heat exchanger in the lower convective zone.

hfg :

Latent heat of evaporation and condensation (kJ kg−1).

HP:

Heat pipe.

HPHE:

Heat pipe heat exchanger.

HSZ:

Heat storage zone.

hτ :

Radiative heat transfer co-efficient (W m−2 °C C−1).

I:

Total radiation in kJ m−1 day−1.

i,o:

Internal, external.

IOT:

Internet of Things.

Isol :

Incident solar radiation on the surface of the pool.

ISPBSS:

Inclined solar panel basin solar still.

ISWD:

Inclined solar water distillation.

Ix :

Solar radiation reached to a specific depth.

KC:

Kalina cycle.

L:

Latent heat of vaporization.

LCZ:

Lower convective zone.

LFR:

Linear Fresnel reflector.

LGMD:

Liquid gap membrane distillation.

LHE:

Lateral heat exchanger.

LHS:

Latent heat storage.

md :

Mass of distillate (kg).

MD:

Membrane distillation.

md:

Rate of desalinated water (kg h−1).

MED:

Multi-effect desalination.

MEHDH:

Multi-effect humidification–dehumidification.

MEMS:

Multi-effect multi-stage.

MES:

Multi-effect stack.

mf :

Air mass flow rate (kg s−1).

MOP:

Muriate of potash.

MSE/HR:

Multi-stage evaporation/ heat recovery.

MSF:

Multi-stage flash.

MSP:

Makkah solar pond.

MSS:

Main solar still.

MWCNT:

Multi-walled carbon nanotubes.

NCZ:

Non-convective zone.

NEPCM:

Nano-enhanced phase change material.

NOP:

Potash nitrate.

NPCM:

Nanoparticle paraffin phase change material.

NTU:

Nephelometric turbidity unit.

ORC:

Organic Rankine cycle.

PCM:

Phase change material.

PISPB:

Passive inclined solar panel basin.

Pp :

Power of pumps.

PPSP:

Pilot area solar pond.

PTC:

Parabolic trough collector.

PTFE:

Poly tetra flluroethylene.

PTPGU:

Plate type power generation unit.

PV:

Photovoltaic.

PVDSCP:

Saline water desalination.

PVSCP:

Transparent PV cells.

qcg :

Condensation heat transfer between air and glass (W).

Qcond :

Rate of conduction heat transfer (W).

qcw :

Convection heat transfer between water and air (W).

qeg :

Convection heat transfer between air and glass (W).

qew :

Evaporative heat transfer between water and air (W).

Qgain :

Energy gain by solar radiation (W).

Qin :

Heat input to the system (W).

Qload :

Heat load extracted from storage zone (W).

Qloss :

Total heat losses from the storage zone (W).

qlp :

Thermal losses between the thermal energy storage layers (W).

qpd :

Heat loss during diurnal period (W).

Qs :

Rate of solar radiation absorbed in a layer (W).

Qsp :

Heat supplied from solar pond to modified still (kJ).

Qv :

Energy required to evaporate brackish water (kJ kg−1).

RO:

Reverse osmosis.

SAH:

Solar air heater.

SBSPSS:

Solo basin square pyramid solar still.

SCP:

Solar chimney power plant.

SD:

Solar desalination.

SDHDH:

Solar desalination humidification–dehumidification.

SDPS:

Solar desalination pond system.

SGMD:

Sweeping gas membrane distillation.

SGSP:

Salt gradient solar pond (or) pool.

SGSP-KC/RO:

Salt gradient solar pond Kalina cycle/reverse osmosis.

SGSP-ORC/RO:

Salt gradient solar pond Organic Rankine cycle/reverse osmosis.

SMN:

Stability margin number.

SP:

Solar pond (or) pool.

SPPP:

Solar pond power plant.

SR:

Surface roughness.

SSP:

Shallow solar pond.

SWRO:

Seawater reverse osmosis.

T:

Temperature (oC).

t:

Time (sec).

TAD:

Anaerobic digestion.

Tamb:

Ambient temperature (°C)

TDS:

Total dissolved solids.

TEC:

Thermoelectric cells.

TEG:

Thermoelectric generator.

TES:

Thermal energy storage.

Tf :

Airstream temperature (°C)

TFE:

Tetra fluro ethane

Ts :

Storage zone temperature (°C).

Tsky :

Sky temperature (°C).

UCZ:

Upper convective zone.

VMD:

Vacuum membrane distillation.

V-MEMD:

Vacuum-multi-effect membrane distillation.

w:

Humidity ratio (kg kg−1 dry air).

Wp :

Pump work (kJ).

x:

Depth of water (m)

(ατ)p :

Absorptivity and transmissivity of the heat storage layer.

(ατ)w :

Absorptivity and transmissivity of the salt water.

α evp :

Ratio of evaporation from evaporation pool to that of fresh water.

η thermal :

Thermal efficiency.

ρ w :

Density of fresh water (kg m−3).

τ:

Transmissivity of water surface.

ϕ p :

Still productivity in litre m−2 day−1.

θr :

Angle of refraction

References

  1. Cherp A, Jewell J. The concept of energy security: beyond the four as. Energy Policy. 2014;75:415–21. https://doi.org/10.1016/j.enpol.2014.09.005.

    Article  Google Scholar 

  2. Victor DG, Kennel CF. Climate policy: ditch the 2°C warming goal. Nature. 2014;514:30–1. https://doi.org/10.1038/514030a.

    Article  CAS  PubMed  Google Scholar 

  3. Duffie JA, Beckman, WA, Worek WM, Solar Engineering of Thermal Processes, 2nd ed. 1994. http://doi.org/https://doi.org/10.1115/1.2930068.

  4. Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sustain Energy Rev. 2011;15:1777–90. https://doi.org/10.1016/j.rser.2010.12.018.

    Article  Google Scholar 

  5. Soltani S, Kasaeian A, Sarrafha H, Wen D. An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol Energy. 2017;155:1033–43. https://doi.org/10.1016/j.solener.2017.06.069.

    Article  CAS  Google Scholar 

  6. Moaleman A, Kasaeian A, Aramesh M, Mahian O, Sahota L, Nath TG. Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system. Energy Convers Manage. 2018;160:191–208. https://doi.org/10.1016/j.enconman.2017.12.057.

    Article  Google Scholar 

  7. Munoz F, Almanza R. A survey of solar pond developments. Energy. 1992;17:927–38. https://doi.org/10.1016/0360-5442(92)90041-W.

    Article  CAS  Google Scholar 

  8. Pawar SH, Chapgaon AN. Fertilizer solar ponds as a clean source of energy: some observations from small scale experiments. Sol Energy. 1995;55:537–42. https://doi.org/10.1016/0038-092X(95)00096-A.

    Article  CAS  Google Scholar 

  9. Murthy GRR, Pandey KP. Comparative performance evaluation of fertilizer solar pond under simulated conditions. Renew Energy. 2003;28:455–66. https://doi.org/10.1016/S0960-1481(02)00046-0.

    Article  CAS  Google Scholar 

  10. Assari MR, Basirat Tabrizi H, Jafar Gholi Beik A. Experimental studies on the effect of using phase change material in salinity-gradient solar pond. Sol Energy. 2015;122:204–14. https://doi.org/10.1016/j.solener.2015.07.053.

    Article  Google Scholar 

  11. Al-Nimr MA, Al-Dafaie AMA. Using nanofluids in enhancing the performance of a novel two-layer solar pond. Energy. 2014;68:318–26. https://doi.org/10.1016/j.energy.2014.03.023.

    Article  CAS  Google Scholar 

  12. Malik N, Date A, Leblanc J, Akbarzadeh A, Meehan B. Monitoring and maintaining the water clarity of salinity gradient solar ponds. Sol Energy. 2011;85:2987–96. https://doi.org/10.1016/j.solener.2011.08.040.

    Article  CAS  Google Scholar 

  13. Gasulla N, Yaakob Y, Leblanc J, Akbarzadeh A, Cortina JL. Brine clarity maintenance in salinity-gradient solar ponds. Sol Energy. 2011;85:2894–902. https://doi.org/10.1016/j.solener.2011.08.028.

    Article  Google Scholar 

  14. Jayaprakash R, Perumal K, Arunkumar T, Kumar S, Kojima T. Effect of carboxymethyl cellulose gel on thermal-energy storage by ground shallow solar ponds. J Chem Eng Japan. 2011;44:816–20. https://doi.org/10.1252/jcej.10we264.

    Article  CAS  Google Scholar 

  15. Sayer AH, Al-Hussaini H, Campbell AN. Experimental analysis of the temperature and concentration profiles in a salinity gradient solar pond with, and without a liquid cover to suppress evaporation. Sol Energy. 2017;155:1354–65. https://doi.org/10.1016/j.solener.2017.08.002.

    Article  Google Scholar 

  16. Ganguly S, Jain R, Date A, Akbarzadeh A. On the addition of heat to solar pond from external sources. Sol Energy. 2017;144:111–6. https://doi.org/10.1016/j.solener.2017.01.012.

    Article  Google Scholar 

  17. Assari MR, Basirat Tabrizi H, Parvar M, Kavoosi Nejad A, Jafar Gholi Beik A. Experiment and optimization of mixed medium effect on small-scale salt gradient solar pond. Sol Energy. 2017;151:102–9. https://doi.org/10.1016/j.solener.2017.04.042.

    Article  Google Scholar 

  18. Khalilian M. Assessment of the overall energy and exergy efficiencies of the salinity gradient solar pond with shading effect. Sol Energy. 2017;158:311–20. https://doi.org/10.1016/j.solener.2017.09.059.

    Article  Google Scholar 

  19. Aboul-Enein S, El-Sebaii AA, Ramadan MRI, Khallaf AM. Parametric study of a shallow solar-pond under the batch mode of heat extraction. Appl Energy. 2004;78:159–77. https://doi.org/10.1016/j.apenergy.2003.06.001.

    Article  Google Scholar 

  20. Yaakob Y, Date A, Akbarzadeh A, Heat extraction from gradient layer using external heat exchangers to enhance the overall efficiency of solar ponds. In: 2011 IEEE 1st Conf Clean Energy Technol. CET, 2011; 23–28. https://doi.org/https://doi.org/10.1109/CET.2011.6041453.

  21. Aramesh M, Pourfayaz F, Kasaeian A. Transient heat extraction modeling method for a rectangular type salt gradient solar pond. Energy Convers Manage. 2017;132:316–26. https://doi.org/10.1016/j.enconman.2016.11.036.

    Article  Google Scholar 

  22. Yaakob Y, Ul-Saufie AZ, Idrus F, Ibrahim D. The development of thermosiphon heat exchanger for solar ponds heat extraction. AIP Conf Proc. 2016;1774:60003. https://doi.org/10.1063/1.4965111.

    Article  Google Scholar 

  23. Date A, Yaakob Y, Date A, Krishnapillai S, Akbarzadeh A. Heat extraction from non-convective and lower convective zones of the solar pond: a transient study. Sol Energy. 2013;97:517–28. https://doi.org/10.1016/j.solener.2013.09.013.

    Article  Google Scholar 

  24. Ding LC, Akbarzadeh A, Date A, Frawley DJ. Passive small scale electric power generation using thermoelectric cells in solar pond. Energy. 2016;117:149–65. https://doi.org/10.1016/j.energy.2016.10.085.

    Article  Google Scholar 

  25. Tundee S, Srihajong N, Charmongkolpradit S. Electric power generation from solar pond using combination of thermosyphon and thermoelectric modules. Energy Procedia. 2014;48:453–63. https://doi.org/10.1016/j.egypro.2014.02.054.

    Article  CAS  Google Scholar 

  26. Akbarzadeh A, Johnson P, Singh R. Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Sol Energy. 2009;83:1345–59. https://doi.org/10.1016/j.solener.2009.02.010.

    Article  CAS  Google Scholar 

  27. Zhao Y, Akbarzadeh A, Andrews J. Combined water desalination and power generation using a salinity gradient solar pond as a Renew Energy source. In: Proc. Ises Sol. World Congr. 2007 Sol. Energy Hum. Settlement. 2006;I–V: pp. 2–6.

  28. Asayesh M, Kasaeian A, Ataei A. Optimization of a combined solar chimney for desalination and power generation. Energy Convers Manage. 2017;150:72–80. https://doi.org/10.1016/j.enconman.2017.08.006.

    Article  Google Scholar 

  29. Nakoa K, Rahaoui K, Date A, Akbarzadeh A. An experimental review on coupling of solar pond with membrane distillation. Sol Energy. 2015;119:319–31. https://doi.org/10.1016/j.solener.2015.06.010.

    Article  CAS  Google Scholar 

  30. Garrido F, Vergara J. Design of solar pond for water preheating used in the copper cathodes washing at a mining operation at Sierra Gorda. Chile J Renew Sustain Energy. 2013;5:1. https://doi.org/10.1063/1.4812652.

    Article  CAS  Google Scholar 

  31. Rivera W. Experimental evaluation of a single-stage heat transformer used to increase solar pond’s temperature. Sol Energy. 2000;69:369–76. https://doi.org/10.1016/S0038-092X(00)00107-9.

    Article  CAS  Google Scholar 

  32. Kishore VVN, Kumar A. Solar pond: an exercise in development of indigenous technology at Kutch. India Energy Sustain Develop. 1996;3(1):17–28. https://doi.org/10.1016/S0973-0826(08)60177-5.

    Article  Google Scholar 

  33. Tabor, H. Review Article Solar Ponds. 1981;181–194.

  34. Velmurugan V, Srithar K. Prospects and scopes of solar pond: a detailed review. Renew Sustain Energy Rev. 2008;12:2253–63. https://doi.org/10.1016/j.rser.2007.03.011.

    Article  Google Scholar 

  35. Leblanc J, Akbarzadeh A, Andrews J, Lu H, Golding P. Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency. Sol Energy. 2011;85:3103–42. https://doi.org/10.1016/j.solener.2010.06.005.

    Article  CAS  Google Scholar 

  36. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Khallaf AM. History of the solar ponds: a review study. Renew Sustain Energy Rev. 2011;15:3319–25. https://doi.org/10.1016/j.rser.2011.04.008.

    Article  CAS  Google Scholar 

  37. Abdulsalam A, Idris A, Mohamed TA, Ahsan A. The development and pplications of solar pond: a review. Desalin Water Treat. 2015;53:2437–49. https://doi.org/10.1080/19443994.2013.870710.

    Article  CAS  Google Scholar 

  38. Ranjan KR, Kaushik SC. Thermodynamic and economic feasibility of solar ponds for various thermal applications: a comprehensive review. Renew Sustain Energy Rev. 2014;32:123–39. https://doi.org/10.1016/j.rser.2014.01.020.

    Article  Google Scholar 

  39. Simic M, George J. Design of a system to monitor and control solar pond: a review. Energy Procedia. 2017;110:322–7. https://doi.org/10.1016/j.egypro.2017.03.147.

    Article  Google Scholar 

  40. Ding LC, Akbarzadeh A, Tan L. A review of power generation with thermoelectric system and its alternative with solar ponds. Renew Sustain Energy Rev. 2018;81:799–812. https://doi.org/10.1016/j.rser.2017.08.010.

    Article  Google Scholar 

  41. Dincer I, Yapicioglu A. Solar ponds comprehensive energy systems. Energy Rev. 2018;4:659–91. https://doi.org/10.1016/B978-0-12-809597-3.00427-2.

    Article  CAS  Google Scholar 

  42. Lodhi MAK. Solar ponds in alkaline lake and oil well regions. Energy Convers Manage. 1996;37(12):1677–94. https://doi.org/10.1016/0196-8904(95)00360-6.

    Article  CAS  Google Scholar 

  43. Kurt H, Ozkaymak M, Korhan BA. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation. Appl Energy. 2006;83(4):324–42. https://doi.org/10.1016/j.apenergy.2005.03.001.

    Article  CAS  Google Scholar 

  44. Berkani M, Sissaoui H, Abdelli A, Kermiche M, Barker-Read G. Comparison of three solar ponds with different salts through bi-dimensional modeling. Sol Energy. 2015;116:56–68. https://doi.org/10.1016/j.solener.2015.03.024.

    Article  CAS  Google Scholar 

  45. Bozkurt I, Deniz S, Karakilcik M, Dincer I. Performance assessment of a magnesium chloride saturated solar pond. Renew Energy. 2015;78:35–41. https://doi.org/10.1016/j.renene.2014.12.06019.

    Article  CAS  Google Scholar 

  46. Hull JR. Solar ponds using ammonium salts. Sol Energy. 1986;36:551–8.

    Article  CAS  Google Scholar 

  47. Pawar SH, Chapgaon AN. Fertilizer solar ponds as a clean source of energy: Some observations from small scale experiments. Sol Energy. 1995;55(6):537–42. https://doi.org/10.1016/0038-092X(95)00096-A.

    Article  CAS  Google Scholar 

  48. Jubran BA, Ajlouni KS, Haimour M. Convective layers generated in solar ponds with fertilizer salts. Sol Energy. 1999;65(5):323–34. https://doi.org/10.1016/S0038-092X(98)00141-8.

    Article  CAS  Google Scholar 

  49. Murthy GRR, Pandey KP. Scope of fertiliser solar ponds in Indian agriculture. Energy. 2002;27(2):117–26. https://doi.org/10.1016/S0360-5442(01)00059-7.

    Article  Google Scholar 

  50. Hassairi M, Safi MJ, Chibani S. Natural brine solar pond: an experimental study. Sol Energy. 2001;70(1):45–50. https://doi.org/10.1016/S0038-092X(00)00110-9.

    Article  CAS  Google Scholar 

  51. Nie Z, Bu L, Zheng M, Huang W. Experimental study of natural brine solar ponds in Tibet. Sol Energy. 2011;85(7):1537–42. https://doi.org/10.1016/j.solener.2011.04.011.

    Article  CAS  Google Scholar 

  52. Monjezi AA, Mahood HB, Campbell AN. Regeneration of dimethyl ether as a draw solute in forward osmosis by utilising thermal energy from a solar pond. Desalination. 2017;415:104–14. https://doi.org/10.1016/j.desal.2017.03.03469.

    Article  CAS  Google Scholar 

  53. Karim C, Slim Z, Kais C, Jomaa SM, Akbarzadeh A. Experimental study of the salt gradient solar pond stability. Sol Energy. 2010;84(1):24–31. https://doi.org/10.1016/j.solener.2009.09.005.

    Article  CAS  Google Scholar 

  54. Hill AA, Carr M. Advances in Water Resources Stabilising solar ponds by utilising porous materials. Adv Water Resour. 2013;60:1–6. https://doi.org/10.1016/j.advwatres.2013.07.00545.

    Article  Google Scholar 

  55. Hill AA, Carr M. Advances in Water Resources The influence of a fluid-porous interface on solar pond stability. Adv Water Resour. 2013;52:1–6. https://doi.org/10.1016/j.advwatres.2012.08.00946.

    Article  Google Scholar 

  56. Wang H, Zou J, Cortina JL, Kizito J. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond. Sol Energy. 2014;110:756–67. https://doi.org/10.1016/j.solener.2014.10.018106.

    Article  Google Scholar 

  57. Al-nimr MA, Al-dafaie AMA. Using nano fluids in enhancing the performance of a novel two-layer solar pond. Energy. 2014;68:318–26. https://doi.org/10.1016/j.energy.2014.03.0239.

    Article  CAS  Google Scholar 

  58. Wang H, Yu X, Shen F, Zhang L. A Laboratory experimental study on effect of porous medium on salt diffusion of salt gradient solar pond. Sol Energy. 2015;122:630–9. https://doi.org/10.1016/j.solener.2015.09.005105.

    Article  Google Scholar 

  59. Assari MR, BasiratTabrizi H, Jafar Gholi Beik A. Experimental studies on the effect of using phase change material in salinity-gradient solar pond. Sol Energy. 2015;122:204–14. https://doi.org/10.1016/j.solener.2015.07.05315.

    Article  Google Scholar 

  60. Assari MR, BasiratTabrizi H, Parvar M, KavoosiNejad A, JafarGholiBeik A. Experiment and optimization of mixed medium effect on small-scale salt gradient solar pond. Sol Energy. 2017;151:102–9. https://doi.org/10.1016/j.solener.2017.04.04216.

    Article  Google Scholar 

  61. Sarathkumar P, Sivaram AR, Rajavel R, Praveen Kumar R, Krishnakumar SK. Experimental investigations on the performance of a solar pond by using encapsulated Pcm with nanoparticles. Mater Today Proc. 2017;4:2314–22. https://doi.org/10.1016/j.matpr.2017.02.08081.

    Article  Google Scholar 

  62. Sayer AH, Campbell A-H, AN, . New comprehensive investigation on the feasibility of the gel solar pond, and a comparison with the salinity gradient solar pond. Appl Therm Eng. 2018;130:672–83. https://doi.org/10.1016/j.applthermaleng.2017.11.056.

    Article  Google Scholar 

  63. Sathish D, Jegadheeswaran S. Materials science for energy technologies relative study of steel solar pond with sodium chloride and pebbles. Mater Sci Energy Technol. 2018;1:171–4. https://doi.org/10.1016/j.mset.2018.07.00282.

    Article  Google Scholar 

  64. Wang H, Wu Q, Mei Y, Zhang L, Pang S. A study on exergetic performance of using porous media in the salt gradient solar pond. Appl Therm Eng. 2018;136:301–8. https://doi.org/10.1016/j.applthermaleng.2018.03.025.

    Article  Google Scholar 

  65. Amirifard M, Kasaeian A, Amidpour M. Integration of a solar pond with a latent heat storage system. Renew Energy. 2018;125:682–93. https://doi.org/10.1016/j.renene.2018.03.009.

    Article  Google Scholar 

  66. Mahfoudh Ines M, Paolo P, Roberto F, Mohamed S. Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator. Sol Energy. 2019;186:335–46. https://doi.org/10.1016/j.solener.2019.05.011.

    Article  Google Scholar 

  67. Wang J, Seyed-Yagoobi J. Effect of water turbidity on thermal performance of a salt-gradient solar pond. Sol Energy. 1995;54(5):301–8. https://doi.org/10.1016/0038-092X(94)00134-Y.

    Article  CAS  Google Scholar 

  68. Li N, Yin F, Sun W, Zhang C, Shi Y. Turbidity study of solar ponds utilizing seawater as salt source. Sol Energy. 2010;84(2):289–95. https://doi.org/10.1016/j.solener.2009.11.010.

    Article  CAS  Google Scholar 

  69. Gasulla N, Yaakob Y, Leblanc J, Akbarzadeh A, Luis J. Brine clarity maintenance in salinity-gradient solar ponds. Sol Energy. 2011;85:2894–902. https://doi.org/10.1016/j.solener.2011.08.02840.

    Article  Google Scholar 

  70. Atiz A, Bozkurt I, Karakilcik M, Dincer I. Investigation of turbidity effect on exergetic performance of solar ponds. Energy Convers Manag. 2014;87:351–8. https://doi.org/10.1016/j.enconman.2014.07.01617.

    Article  Google Scholar 

  71. Sezai I, Taşdemiroglu E. Effect of bottom reflectivity on ground heat losses for solar ponds. Sol Energy. 1995;55:311–9. https://doi.org/10.1016/0038-092X(95)00054-U.

    Article  Google Scholar 

  72. Al-Jamal K, Khashan S. Parametric study of a solar pond for Northern Jordan. Energy. 1996;21:939–46. https://doi.org/10.1016/0360-5442(96)00040-0.

    Article  CAS  Google Scholar 

  73. Badran AA, Jubran BA, Qasem EM, Hamdan MA. Numerical model for the behaviour of a salt-gradient solar-pond greenhouse-heating system. Appl Energy. 1997;58:57–72. https://doi.org/10.1016/S0306-2619(97)00034-2.

    Article  Google Scholar 

  74. Giestas MC, Joyce A, Pina HL. The influence of non-constant diffusivities on solar ponds stability. Int J Heat Mass Transf. 1997;40:4379–91. https://doi.org/10.1016/S0017-9310(97)00050-1.

    Article  Google Scholar 

  75. Al-Juwayhel F, El-Refaee MM. Thermal performance of a combined packed bed–solar pond system—a numerical study. Appl Therm Eng. 1998;18:1207–23. https://doi.org/10.1016/S1359-4311(97)00101-4.

    Article  Google Scholar 

  76. Ouni M, Guizani A, Belguith A. Simulation of the transient behaviour of a salt gradient solar pond in Tunisia. Renew Energy. 1998;14:69–76. https://doi.org/10.1016/S0960-1481(98)00049-4.

    Article  Google Scholar 

  77. Al-Hussaini H, Suen KO. Using shallow solar ponds as a heating source for greenhouses in cold climates. Energy Convers Manage. 1998;39:1369–76. https://doi.org/10.1016/S0196-8904(98)00007-7.

    Article  Google Scholar 

  78. Kayali R, Bozdemir S, Kiymac K. A rectangular solar pond model incorporating empirical functions for air and soil temperatures. Sol Energy. 1998;63:345–53. https://doi.org/10.1016/S0038-092X(98)00104-2.

    Article  CAS  Google Scholar 

  79. Alkhalaileh MT, Atieh KA, Nasser NG, Jubran BA. Modeling and simulation of solar pond floor heating system. Renew Energy. 1999;18:1–14. https://doi.org/10.1016/S0960-1481(98)00781-2.

    Article  Google Scholar 

  80. Mansour RB, Nguyen CT, Galanis N. Transient heat and mass transfer and long-term stability of a salt-gradient solar pond. Mech Res Commun. 2006;33:233–49. https://doi.org/10.1016/j.mechrescom.2005.06.005.

    Article  Google Scholar 

  81. Wu H, Tang LZ, Zhong H. A mathematical procedure to estimate solar absorptance of shallow water ponds. Energy Convers Manage. 2009;50:28–1833. https://doi.org/10.1016/j.enconman.2009.03.005.

    Article  CAS  Google Scholar 

  82. Giestas MC, Pina HL, Milhazes JP, Tavares C. Solar pond modeling with density and viscosity dependent on temperature and salinity. Int J Heat Mass Transf. 2009;52:2849–57. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.003.

    Article  CAS  Google Scholar 

  83. Suarez F, Tyler SW, Childress AE. A fully coupled, transient double-diffusive convective model for salt-gradient solar ponds. Int J Heat Mass Transf. 2010;53:1718–30. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.017.

    Article  CAS  Google Scholar 

  84. Giestas MC, Milhazes JP, Pina HL. Numerical modeling of solar ponds. Energy Procedia. 2014;57:2416–25. https://doi.org/10.1016/j.egypro.2014.10.250.

    Article  Google Scholar 

  85. Khalilian M, Shahrooz M, Abbaszadeh M. Erroneous equations used to calculate evaporation and radiation heat losses from UCZ layer in solar ponds. Sol Energy. 2015;122:1425–8. https://doi.org/10.1016/j.solener.2015.09.017.

    Article  Google Scholar 

  86. Ding LC, Akbarzadeh A, Date A. Transient model to predict the performance of thermoelectric generators coupled with solar pond. Energy. 2016;103:271–89. https://doi.org/10.1016/j.energy.2016.02.124.

    Article  Google Scholar 

  87. Sayer AH, Al-Hussaini H, Campbell AN. An analytical estimation of salt concentration in the upper and lower convective zones of a salinity gradient solar pond with either a pond with vertical walls or trapezoidal cross section. Sol Energy. 2017;158:207–17. https://doi.org/10.1016/j.solener.2017.09.025.

    Article  Google Scholar 

  88. Khodabandeh E, Safaei MR, Akbari S, Akbari OM, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study. Renew Energy. 2018;122:1–16. https://doi.org/10.1016/j.renene.2018.01.023.

    Article  CAS  Google Scholar 

  89. Verma S, Das R. Effect of ground heat extraction on stability and thermal performance of solar ponds considering imperfect heat transfer. Sol Energy. 2019;198:596–604. https://doi.org/10.1016/j.solener.2020.01.085.

    Article  Google Scholar 

  90. Anagnostopoulos A, Sebastia-Saez D, Campbell A, Arellano-Garcia H. Finite element modelling of the thermal performance of salinity gradient solar ponds. Energy. 2020;203:117861. https://doi.org/10.1016/j.energy.2020.117861.

    Article  Google Scholar 

  91. Chakrabarty S, Wankhede U, Shelke R, Gohil T. Investigation of temperature development in salinity gradient solar pond using a transient model of heat transfer. Sol Energy. 2020;202:32–44. https://doi.org/10.1016/j.solener.2020.03.052.

    Article  Google Scholar 

  92. Ramadan MRI, Khallaf AM. Experimental testing of a shallow solar pond with continuous heat extraction. 2004;36:955–64.

    Google Scholar 

  93. Andrews J, Akbarzadeh A. Enhancing the thermal efficiency of solar ponds by extracting heat from the gradient layer. Sol Energy. 2005;78:704–16.

    Article  CAS  Google Scholar 

  94. Angeli C, Leonardi E, Maciocco L. A computational study of salt diffusion and heat extraction in solar pond plants. Sol Energy. 2006;80:1498–508.

    Article  CAS  Google Scholar 

  95. El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM. Thermal performance of shallow solar pond under open cycle continuous flow heating mode for heat extraction. Energy Convers Manage. 2006;47:1014–31. https://doi.org/10.1016/j.enconman.2005.06.008.

    Article  Google Scholar 

  96. El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM. Thermal performance of shallow solar pond under open and closed cycle modes of heat extraction. Sol Energy. 2013;95:30–41. https://doi.org/10.1016/j.solener.2013.05.026.

    Article  Google Scholar 

  97. Jaefarzadeh MR. Heat extraction from a salinity-gradient solar pond using in pond heat exchanger. Appl Therm Eng. 2006;26:1858–65. https://doi.org/10.1016/j.applthermaleng.2006.01.022.

    Article  CAS  Google Scholar 

  98. Tundee S, Terdtoon P, Sakulchangsatjatai P, Singh R. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers. Sol Energy. 2010;84:1706–16. https://doi.org/10.1016/j.solener.2010.04.010101.

    Article  CAS  Google Scholar 

  99. Yaakob Y, Date A, Akbarzadeh A. Heat extraction from gradient layer using external heat exchangers to enhance the overall efficiency of solar ponds. In: 2011IEEE 1st Conf Clean Energy Technol. CET. 2011; 23–28. https://doi.org/10.1109/CET.2011.6041453.

  100. Alcaraz A, Valderrama C, Cortina JL, Akbarzadeh A, Farran A. Enhancing the efficiency of solar pond heat extraction by using both lateral and bottom heat exchangers. Sol Energy. 2016;134:82–94. https://doi.org/10.1016/j.solener.2016.04.0257.

    Article  Google Scholar 

  101. Abbassi Monjezi A, Campbell AN. A comparative study of the performance of solar ponds under Middle Eastern and Mediterranean conditions with batch and continuous heat extraction. Appl Therm Eng. 2017;120:728–40. https://doi.org/10.1016/j.applthermaleng.2017.03.086.

    Article  Google Scholar 

  102. Ganguly S, Date A, Akbarzadeh A. Heat recovery from ground below the solar pond. Sol Energy. 2017;155:1254–60. https://doi.org/10.1016/j.solener.2017.07.06838.

    Article  Google Scholar 

  103. Ziapour BM, Saadat M, Palideh V, Afzal S. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator. Energy Convers Manag. 2017;136:283–93. https://doi.org/10.1016/j.enconman.2017.01.031.

    Article  Google Scholar 

  104. Khalilian M, Pourmokhtar H, Roshan A. Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: a transient study. Energy. 2018.

  105. Khoshvaght-Aliabadi M, Feizabadi A. Employing wavy structure to enhance thermal efficiency of spiral-coil utilized in solar ponds. Sol Energy. 2020;199:552–69. https://doi.org/10.1016/j.solener.2020.02.059.

    Article  Google Scholar 

  106. Ibrahim SMA, El-Reidy MK. Performance of a mobile covered shallow solar pond. Renew Energy. 1995;6:89–100. https://doi.org/10.1016/0960-1481(94)00069-I.

    Article  Google Scholar 

  107. Al-Jamal K, Khashan S. Effect of energy extraction on solar pond performance. Energy Convers Manage. 1998;39:559–66. https://doi.org/10.1016/S0196-8904(97)00051-4.

    Article  Google Scholar 

  108. Prasad R, Rao DP. Estimation of the thickness of the lower convective layer of solar ponds. Renew Energy. 1996;7(4):401–7. https://doi.org/10.1016/0960-1481(96)00003-1.

    Article  Google Scholar 

  109. Taga M, Fujimoto K, Ochi T. Field testing on nonsalt solar ponds. Sol Energy. 1996;56(3):267–77. https://doi.org/10.1016/0038-092X(95)00105-Z.

    Article  CAS  Google Scholar 

  110. Li XY, Baba H, Kanayama K. Development of electrolyte solution concentration measurement system and application in solar pond. Renew Energy. 2001;23:195–206. https://doi.org/10.1016/S0960-1481(00)00173-7.

    Article  Google Scholar 

  111. Jayaprakash R, Perumal K. The stability of an unsustained salt gradient solar pond. Renew Energy. 1998;13:543–8. https://doi.org/10.1016/S0960-1481(98)00016-0.

    Article  Google Scholar 

  112. Jaefarzadeh MR. On the performance of a salt gradient solar pond. App Ther Eng. 2000;20(243–52):47. https://doi.org/10.1016/S1359-4311(99)00024-1.

    Article  Google Scholar 

  113. Tahat MA, Kodah ZH, Probert SD, Al-tahaineh H. Performance of a portable mini solar-pond. Appl Energy. 2000;66:299–310. https://doi.org/10.1016/S0306-2619(00)00021-0.

    Article  CAS  Google Scholar 

  114. Li XY, Kanayama K, Baba H, Maeda Y. Experimental study about erosion in salt gradient solar pond. Renew Energy. 2001;23:207–17. https://doi.org/10.1016/S0960-1481(00)00174-9.

    Article  CAS  Google Scholar 

  115. Agha KR, Abughres SM, Ramadan AM. Design methodology for a salt gradient solar pond coupled with an evaporation pond. Sol Energy. 2002;72:447–54. https://doi.org/10.1016/S0038-092X(02)00021-X.

    Article  CAS  Google Scholar 

  116. Dah MMO, Ouni M, Guizani A, Belghith A. Study of temperature and salinity profiles development of solar pond in laboratory. Desalination. 2005;183:179–85. https://doi.org/10.1016/j.desal.2005.03.034.

    Article  CAS  Google Scholar 

  117. Karakilcik M, Dincer I, Rosen MA. Performance investigation of a solar pond. Appl Therm Eng. 2006;26:727–35. https://doi.org/10.1016/j.applthermaleng.2005.09.003.

    Article  Google Scholar 

  118. Saxena AK, Sugandhi S, Husain M. Significant depth of ground water table for thermal performance of salt gradient solar pond. Renew Energy. 2009;34:790–3. https://doi.org/10.1016/j.renene.2008.04.040.

    Article  Google Scholar 

  119. Valderrama C, Gibert O, Arcal J, Solano P, Akbarzadeh A, Larrotcha E, Cortina JL. Solar Energy storage by salinity gradient solar pond: pilot plant construction and gradient control. Desalination. 2011;279:445–50. https://doi.org/10.1016/j.desal.2011.06.035.

    Article  CAS  Google Scholar 

  120. Jayatissa NWK, Attalage R, Hewageegana PS, Perera PAA, Punyasena MA. Optimization of thermal insulation of a small-scale experimental solar pond. Sri Lankan J Phys. 2012;13:1–9.

    Article  Google Scholar 

  121. Busquets B, Kumar V, Motta M, Chacon R, Lu H. Thermal analysis and measurement of a solar pond prototype to study the non-convective zone salt gradient stability. Sol Energy. 2012;86:1366–77. https://doi.org/10.1016/j.solener.2012.01.029.

    Article  Google Scholar 

  122. Bozkurt I, Karakilcik M. The effect of sunny area ratios on the thermal performance of solar ponds. Energy Convers Manage. 2015;91:323–32. https://doi.org/10.1016/j.enconman.2014.12.023.

    Article  Google Scholar 

  123. Liu H, Jiang L, Wu D, Sun W. Experiment and simulation study of a trapezoidal salt gradient solar pond. Sol Energy. 2015;122:1225–34. https://doi.org/10.1016/j.solener.2015.09.006.

    Article  Google Scholar 

  124. Abdullah AA, Lindsay KA, Abdel Gawad AF. Construction of sustainable heat extraction system and a new scheme of temperature measurement in an experimental solar pond for performance enhancement. Sol Energy. 2016;130:10–24. https://doi.org/10.1016/j.solener.2016.02.005.

    Article  Google Scholar 

  125. Sayer AH, Al-Hussaini H, Campbell AN. New theoretical modelling of heat transfer in solar ponds. Sol Energy. 2016;125:207–18. https://doi.org/10.1016/j.solener.2015.12.015.

    Article  Google Scholar 

  126. Magheir YK, Qarroot A. Treatment of Desalination Brine Using an Experimental Solar Pond. J Eng Res Technol. 2017;4:5–15.

    Google Scholar 

  127. Khalilian M. Energetic performance analysis of solar pond with and without shading effect. Sol Energy. 2017;157:860–8. https://doi.org/10.1016/j.solener.2017.09.005.

    Article  Google Scholar 

  128. Torkmahalleh MA, Askari M, Gorjinezhad S, Eroglu D, Obaidullah M, Habib AR, Godelek S, Kadyrov S, Kahraman O, Pakzad NZ, Ahmadi G. Key factors impacting performance of a salinity gradient solar pond exposed to Mediterranean climate. Sol Energy. 2017;142:321–9. https://doi.org/10.1016/j.solener.2016.12.037.

    Article  Google Scholar 

  129. Abdullah AA, Fallatah HM, Lindsay KA, Oreijah MM. Measurements of the performance of the experimental salt-gradient solar pond at Makkah one year after commissioning. Sol Energy. 2017;150:212–9. https://doi.org/10.1016/j.solener.2017.04.040.

    Article  Google Scholar 

  130. Aramesh M, Kasaeian A, Pourfayaz F, Wen D. Energy analysis and shadow modeling of a rectangular type salt gradient solar pond. Sol Energy. 2017;146:161–71. https://doi.org/10.1016/j.solener.2017.02.026.

    Article  Google Scholar 

  131. Alcaraz A, Montala M, Valderrama C, Cortina JL, Akbarzadeh A, Farran A. Thermal performance of 500 m2 salinity gradient solar pond in Granada, Spain under strong weather conditions. Sol Energy. 2018;171:223–38. https://doi.org/10.1016/j.solener.2018.06.072.

    Article  Google Scholar 

  132. Sarabia A, Meza F, Suarez F. Use of fiber-optic distributed temperature sensing to investigate erosion of the non-convective zone in salt-gradient solar ponds. Sol Energy. 2018;170:499–509. https://doi.org/10.1016/j.solener.2018.05.078.

    Article  Google Scholar 

  133. Sathish D, Jegadheeswaran S. Effective study of thermal behavior on membrane stratified portable solar pond. Mater Today Proc. 2019. https://doi.org/10.1016/j.matpr.2019.08.177.

    Article  Google Scholar 

  134. Spyridonos AV, Argiriou AA, Nickoletatos JK. Thermal storage efficiencies of two solar saltless water ponds. Sol Energy. 2003;75:207–16. https://doi.org/10.1016/j.solener.2003.08.003.

    Article  CAS  Google Scholar 

  135. Bezir NC, Donmez O, Kayali R, Ozek N. Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface. Appl Energy. 2008;85:1102–12. https://doi.org/10.1016/j.apenergy.2008.02.015.

    Article  CAS  Google Scholar 

  136. Bezir NC, Ozek N, Kayal R, Yakut AK, Sencan A, Kalogirou S. Theoretical and experimental analysis of a salt gradient solar pond with insulated and reflective covers. Energy Sour Part A Recov Util Environ Eff. 2009;31:985–1003. https://doi.org/10.1080/15567030802089011.

    Article  CAS  Google Scholar 

  137. Jayaprakash R, Perumal K, Arunkumar T, Kumar S, Kojima T. Effect of carboxymethyl cellulose gel on thermal-energy storage by ground shallow solar ponds. J Chem Eng. 2011;816:820. https://doi.org/10.1252/jcej.10we264.

    Article  Google Scholar 

  138. Bozkurt I, Atiz A, Karakilcik M, Dincer I. An investigation of the effect of transparent covers on the performance of cylindrical solar ponds. Int J Green Energy. 2014;11:404–16. https://doi.org/10.1080/15435075.2013.773900.

    Article  CAS  Google Scholar 

  139. Ruskowitz JA, Suárez F, Tyler SW, Childress AE. Evaporation suppression and Solar Energy collection in a salt-gradient solar pond. Sol Energy. 2014;99:36–46. https://doi.org/10.1016/j.solener.2013.10.035.

    Article  Google Scholar 

  140. Assari MR, Tabrizi HB, Nejad AK, Parvar M. Experimental investigation of heat absorption of different solar pond shapes covered with glazing plastic. Sol Energy. 2015;122:569–78. https://doi.org/10.1016/j.solener.2015.09.013.

    Article  Google Scholar 

  141. Ganesh S, Arumugam S. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications. Ecotoxicol Environ Saf. 2016;134:462–6. https://doi.org/10.1016/j.ecoenv.2016.03.020.

    Article  CAS  PubMed  Google Scholar 

  142. Sogukpinar H, Bozkurt I, Karakilcik M, Cag S. Numerical evaluation of the performance increase for a solar pond with glazed and unglazed. In: 2016 IEEE International Conference Power Renewable Energy, ICPRE 2016. 2017: 598–601. http://doi.org/https://doi.org/10.1109/ICPRE.2016.7871146.

  143. Arulanantham M, Avanti P, Kaushika ND. Solar pond with honeycomb surface insulation system. Renew Energy. 1997;12:435–43. https://doi.org/10.1016/S0960-1481(97)00065-7.

    Article  Google Scholar 

  144. Silva C, Gonzalez D, Suarez F. An experimental and numerical study of evaporation reduction in a salt-gradient solar pond using floating discs. Sol Energy. 2017;142:204–14. https://doi.org/10.1016/j.solener.2016.12.036.

    Article  Google Scholar 

  145. Almanza R, Martínez A, Segura G. Study of a kaolinite clay as a liner for solar ponds. Sol Energy. 1989;42:395–403. https://doi.org/10.1016/0038-092X(89)90058-3.

    Article  CAS  Google Scholar 

  146. Almanza R, Claudia LM. Mechanical and thermal tests of a bentonite clay for use as a liner for solar ponds. Sol Energy. 1990;45:241–5. https://doi.org/10.1016/0038-092X(90)90092-Q.

    Article  CAS  Google Scholar 

  147. Raman P, Kishore VVN. An alternate lining scheme for solar ponds—results of a liner test rig. Sol Energy. 1990;45:193–9. https://doi.org/10.1016/0038-092X(90)90086-R.

    Article  Google Scholar 

  148. Silva G, Almanza R. Use of clays as liners in solar ponds. Sol Energy. 2009;83:905–19. https://doi.org/10.1016/j.solener.2008.12.008.

    Article  CAS  Google Scholar 

  149. Shi Y, Yin F, Shi L, Wence S, Li N, Liu H. Effects of porous media on thermal and salt diffusion of solar pond. Appl Energy. 2011;88:2445–53. https://doi.org/10.1016/j.apenergy.2011.01.033.

    Article  Google Scholar 

  150. Haj Khalil RA, Jubran BA, Faqir NM. Optimization of solar pond electrical power generation system. Energy Convers Manage. 1997;38:787–98. https://doi.org/10.1016/S0196-8904(96)00086-6.

    Article  Google Scholar 

  151. Singh B, Gomes J, Tan L, Date A, Akbarzadeh A. Small scale power generation using low grade heat from solar pond. Proc Eng. 2012;49:50–6. https://doi.org/10.1016/j.proeng.2012.10.111.

    Article  CAS  Google Scholar 

  152. Ding LC, Akbarzadeh A, Date A. Electric power generation via plate type power generation unit from solar pond using thermoelectric cells. Appl Energy. 2016;183:61–76. https://doi.org/10.1016/j.apenergy.2016.08.161.

    Article  CAS  Google Scholar 

  153. Kumar A, Singh K, Verma S, Das R. Inverse prediction and optimization analysis of a solar pond powering a thermoelectric generator. Sol Energy. 2018;169:658–72. https://doi.org/10.1016/j.solener.2018.05.035.

    Article  Google Scholar 

  154. Ghaebi H, Rostamzadeh H. Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond. Renew Energy. 2020;156:748–67. https://doi.org/10.1016/j.renene.2020.04.043.

    Article  CAS  Google Scholar 

  155. Bozkurt I, Karakilcik M. The daily performance of a solar pond integrated with solar collectors. Sol Energy. 2012;86:1611–20. https://doi.org/10.1016/j.solener.2012.02.025.

    Article  CAS  Google Scholar 

  156. Ganguly S, Date A, Akbarzadeh A. On increasing the thermal mass of a salinity gradient solar pond with external heat addition: a transient study. Energy. 2019;168:43–56. https://doi.org/10.1016/j.energy.2018.11.090.

    Article  Google Scholar 

  157. Goktun S. On optimized solar-pond-driven irreversible heat engines. Renew Energy. 1996;7:67–9. https://doi.org/10.1016/0960-1481(95)00112-3.

    Article  Google Scholar 

  158. Jubran BA, Badran AA, Hamdan MA. Sol Energy augmentation of a carnalite solar pond using inverted trickle collectors. Energy Convers Manage. 1997;38:245–52. https://doi.org/10.1016/S0196-8904(96)00046-5.

    Article  Google Scholar 

  159. Yu J, Zheng M, Wu Q, Nie Z, Bu L. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond. Sol Energy. 2015;115:133–44. https://doi.org/10.1016/j.solener.2015.02.021.

    Article  CAS  Google Scholar 

  160. Zhang G, Wu Z, Cheng F, Min Z, Lee DJ. Thermophilic digestion of waste-activated sludge coupled with solar pond. Renew Energy. 2016;98:142–7. https://doi.org/10.1016/j.renene.2016.03.052.

    Article  CAS  Google Scholar 

  161. Erden M, Karakilcik M, Dincer I. Performance investigation of hydrogen production by the flat-plate collectors assisted by a solar pond. Int J Hydrogen Energy. 2017;42:2522–9. https://doi.org/10.1016/j.ijhydene.2016.04.116.

    Article  CAS  Google Scholar 

  162. Chavaco LC, Arcos CA, Prato-Garcia D. Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry. J Environ Manage. 2017;198:203–12. https://doi.org/10.1016/j.jenvman.2017.04.077.

    Article  CAS  PubMed  Google Scholar 

  163. Rivera W, Romero RJ. Evaluation of a heat transformer powered by a solar pond. Sol Energy Mater Solar Cells. 2000;63:413–22. https://doi.org/10.1016/S0927-0248(00)00060-X.

    Article  CAS  Google Scholar 

  164. Rivera W, Cardoso MJ, Romero RJ. Single-stage and advanced absorption heat transformers operating with lithium bromide mixtures used to increase solar pond’s temperature. Sol Energy Mater Solar Cells. 2001;70:321–33. https://doi.org/10.1016/S0927-0248(01)00074-5.

    Article  CAS  Google Scholar 

  165. Sencan A, Kızılkan O, Bezir NC, Kalogirou SA. Different methods for modeling absorption heat transformer powered by solar pond. Energy Convers Manage. 2007;48:724–35. https://doi.org/10.1016/j.enconman.2006.09.013.

    Article  CAS  Google Scholar 

  166. Kanan S, Dewsbury J, Lane-Serff GF. Simulation of solar air-conditioning system with salinity gradient solar pond. Energy Procedia. 2015;79:746–51. https://doi.org/10.1016/j.egypro.2015.11.561.

    Article  Google Scholar 

  167. Salata F, Tarsitano A, Golasi I, de Lieto VE, Coppi M, de Lieto VA. Application of absorption systems powered by solar ponds in warm climates for the air conditioning in residential buildings. Energies. 2016. https://doi.org/10.3390/en9100821.

    Article  Google Scholar 

  168. Elsarrag E, Igobo ON, Alhorr Y, Davies PA. Solar pond powered liquid desiccant evaporative cooling. Renew Sustain Energy Rev. 2016;58:124–40. https://doi.org/10.1016/j.rser.2015.12.053.

    Article  Google Scholar 

  169. Belessiotis V, Delyannis E. Solar Energy: some proposals for future development and application to desalination. Desalination. 1996;105:151–8.

    Article  CAS  Google Scholar 

  170. Delyannis EE, Belessiotis V. Solar application in desalination: the Greek Islands experiment. Desalination. 1995;100:27–34.

    Article  Google Scholar 

  171. Kalogirou S. Economic analysis of a solar assisted desalination system. Renew Energy. 1997;12:351–67. https://doi.org/10.1016/S0960-1481(97)00063-3.

    Article  Google Scholar 

  172. Kalogirou S. Survey of solar desalination systems and system selection. Energy. 1997;22:69–81. https://doi.org/10.1016/S0360-5442(96)00100-4.

    Article  CAS  Google Scholar 

  173. Mattheus FA, Goosen SS, Sablani WH, Shayya Charles P, Hilal A-H. Thermodynamic and economic considerations in solar desalination. Desalination. 2000;129:63–89.

    Article  Google Scholar 

  174. Chaibi MT. An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination. 2000;127:119–33. https://doi.org/10.1016/S0011-9164(99)00197-6.

    Article  CAS  Google Scholar 

  175. Chaouchi B, Zrelli A, Gabsi S. Desalination of brackish water by means of a parabolic solar concentrator. Desalination. 2007;217:118–26. https://doi.org/10.1016/j.desal.2007.02.009.

    Article  CAS  Google Scholar 

  176. Arjunan TV, Aybar HS, Nedunchezhian N. Status of solar desalination in India. Renew Sustain Energy Rev. 2009;13:2408–18. https://doi.org/10.1016/j.rser.2009.03.006.

    Article  CAS  Google Scholar 

  177. Guillén-Burrieza E, Blanco J, Zaragoza G, Alarcón DC, Palenzuela P, Ibarra M, et al. Experimental analysis of an air gap membrane distillation solar desalination pilot system. J Memb Sci. 2011;379:386–96. https://doi.org/10.1016/j.memsci.2011.06.009.

    Article  CAS  Google Scholar 

  178. Chen Z, Xie G, Chen Z, Zheng H, Zhuang C. Field test of a solar seawater desalination unit with triple-effect falling film regeneration in northern China. Sol Energy. 2012;86:31–9. https://doi.org/10.1016/j.solener.2011.08.03721.

    Article  CAS  Google Scholar 

  179. Zarasvand Asadi R, Suja F, Tarkian F, Mashhoon F, Rahimi S, Atash JA. Solar desalination of Gas Refinery wastewater using membrane distillation process. Desalination. 2012;291:56–64. https://doi.org/10.1016/j.desal.2012.01.025103.

    Article  CAS  Google Scholar 

  180. Shatat M, Worall M, Riffat S. Economic study for an affordable small scale solar water desalination system in remote and semi-arid region. Renew Sustain Energy. 2013;25:543–51. https://doi.org/10.1016/j.rser.2013.05.02690.

    Article  Google Scholar 

  181. Chafidz A, Al-Zahrani S, Al-Otaibi MN, Hoong CF, Lai TF, Prabu M. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination. 2014;345:36–49. https://doi.org/10.1016/j.desal.2014.04.017.

    Article  CAS  Google Scholar 

  182. Gorjian S, Ghobadian B. Solar desalination: A sustainable solution to water crisis in Iran. Renew Sustain Energy Rev. 2015;48:571–84. https://doi.org/10.1016/j.rser.2015.04.00940.

    Article  Google Scholar 

  183. Reif JH, Alhalabi W. Solar-thermal powered desalination: Its significant challenges and potential. Renew Sustain Energy Rev. 2015;48:152–65. https://doi.org/10.1016/j.rser.2015.03.065.

    Article  Google Scholar 

  184. Sharon H, Reddy KS. A review of Solar Energy driven desalination technologies. Renew Sustain Energy Rev. 2015;41:1080–118. https://doi.org/10.1016/j.rser.2014.09.00289.

    Article  CAS  Google Scholar 

  185. Pugsley A, Zacharopoulos A, Mondol JD, Smyth M. Global applicability of solar desalination. Renew Energy. 2016;88:200–19. https://doi.org/10.1016/j.renene.2015.11.01775.

    Article  Google Scholar 

  186. El-Bialy E, Shalaby SM, Kabeel AE, Fathy AM. Cost analysis for several solar desalination systems. Desalination. 2016;384:12–30. https://doi.org/10.1016/j.desal.2016.01.02830.

    Article  CAS  Google Scholar 

  187. Pugsley A, Zacharopoulos A, Mondol JD, Smyth M. Solar desalination potential around the world. Renew Energy Power Desalin Handb Appl Thermodyn. 2018;47:90. https://doi.org/10.1016/B978-0-12-815244-7.00002-774.

    Article  Google Scholar 

  188. Pouyfaucon AB, García-Rodríguez L. Solar thermal-powered desalination: a viable solution for a potential market. Desalination. 2018;435:60–9. https://doi.org/10.1016/j.desal.2017.12.02573.

    Article  CAS  Google Scholar 

  189. Tlili I, Alkanhal TA, Othman M, Dara RN, Shafee A. Water management and desalination in KSA view 2030: case study of solar humidification and dehumidification system. J Therm Anal Calorim. 2020;139:3745–56.

    Article  CAS  Google Scholar 

  190. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2020;139:3317–29. https://doi.org/10.1007/s10973-019-08683-x27.

    Article  CAS  Google Scholar 

  191. Rashidi S, Karimi N, Mahian O, Abolfazli EJ. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59. https://doi.org/10.1007/s10973-018-7500-821.

    Article  CAS  Google Scholar 

  192. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139:1619–36. https://doi.org/10.1007/s10973-019-08634-625.

    Article  CAS  Google Scholar 

  193. Rahim NHA. New method to store heat energy in horizontal solar desalination still. Renew Energy, 2003;28;419–423. http://www.sciencedirect.com/science/article/pii/S014067010383000X77.

  194. Abdel-Rehim ZS, Lasheen A. Improving the performance of solar desalination systems. Renew Energy. 2005;30:1955–71. https://doi.org/10.1016/j.renene.2005.01.008.

    Article  Google Scholar 

  195. Zheng H, Chang Z, Chen Z, Xie G, Wang H. Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices. Desalination. 2013;311:62–8. https://doi.org/10.1016/j.desal.2012.11.021105.

    Article  CAS  Google Scholar 

  196. Zaragoza G, Ruiz-Aguirre A, Guillén-Burrieza E. Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Appl Energy. 2014;130:491–9. https://doi.org/10.1016/j.apenergy.2014.02.024102.

    Article  Google Scholar 

  197. El-Agouz SA, El-Samadony YAF, Kabeel AE. Performance evaluation of a continuous flow inclined solar still desalination system. Energy Convers Manag. 2015;101:606–15. https://doi.org/10.1016/j.enconman.2015.05.06929.

    Article  Google Scholar 

  198. Ibrahim AGM, Dincer I. A solar desalination system: exergetic performance assessment. Energy Convers Manag. 2015;101:379–92. https://doi.org/10.1016/j.enconman.2015.05.06050.

    Article  Google Scholar 

  199. Hosseini SS, Farhadi M, Sedighi K. Experimental investigation of a solar desalination system using twisted tape and wire coil inside of spiral heat exchanger. Desalination. 2017;420:34–44. https://doi.org/10.1016/j.desal.2017.06.004.

    Article  CAS  Google Scholar 

  200. Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy. 2017;41:201–9. https://doi.org/10.1016/j.nanoen.2017.09.03460.

    Article  CAS  Google Scholar 

  201. Hakim ABA, Azni ME, Mupit M, Bakar NA. Development of solar desalination system from seawater by using basin Sol. Energy Mater Today Proc. 2018;5:22137–42. https://doi.org/10.1016/j.matpr.2018.07.08144.

    Article  CAS  Google Scholar 

  202. Bellos E, Tzivanidis C, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim. 2019;135:237–55. https://doi.org/10.1007/s10973-018-6989-14.

    Article  CAS  Google Scholar 

  203. Sasikumar C, Manokar AM, Vimala M, Prince Winston D, Kabeel AE, Sathyamurthy R, et al. Experimental studies on passive inclined solar panel absorber solar still. J Therm Anal Calorim. 2020;139:3649–60. https://doi.org/10.1007/s10973-019-08770-z23.

    Article  CAS  Google Scholar 

  204. Rahim NHA. Utilization of a forced condensing technique in a moving film inclined solar desalination still. Desalination. 1995;101:255–62. https://doi.org/10.1016/0011-9164(95)00028-Z.

    Article  CAS  Google Scholar 

  205. Bemporad GA. Basic hydrodynamic aspects of a Sol Energy Based desalination process. Sol Energy. 1995;54(2):125–34. https://doi.org/10.1016/0038-092X(94)00110-Y.

    Article  Google Scholar 

  206. Nafey AS, Mohamad MA, El-Helaby SO, Sharaf MA. Theoretical and experimental study of a small unit for solar desalination using flashing process. Energy Convers Manag. 2007;48:528–38. https://doi.org/10.1016/j.enconman.2006.06.010.

    Article  CAS  Google Scholar 

  207. Elsafty AF, Fath HE, Amer AM. Mathematical model development for a new solar desalination system (SDS). Energy Convers Manag. 2008;49:3331–7. https://doi.org/10.1016/j.enconman.2008.04.016.

    Article  Google Scholar 

  208. Marmouch H, Orfi J, Nasrallah SB. Effect of a cooling tower on a solar desalination system. Desalination. 2009;238:281–9. https://doi.org/10.1016/j.desal.2008.02.01964.

    Article  CAS  Google Scholar 

  209. Zamen M, Amidpour M, Soufari SM. Cost optimization of a solar humidification-dehumidification desalination unit using mathematical programming. Desalination. 2009;239:92–9. https://doi.org/10.1016/j.desal.2008.03.009100.

    Article  CAS  Google Scholar 

  210. Gude VG, Nirmalakhandan N, Deng S, Maganti A. Low temperature desalination using solar collectors augmented by thermal energy storage. Appl Energy. 2012;91:466–74. https://doi.org/10.1016/j.apenergy.2011.10.01842.

    Article  CAS  Google Scholar 

  211. Yildirim C, Solmuş I. A parametric study on a humidification-dehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers Manag. 2014;86:568–75. https://doi.org/10.1016/j.enconman.2014.06.016.

    Article  Google Scholar 

  212. El-Agouz SA, Abd El-Aziz GB, Awad AM. Solar desalination system using spray evaporation. Energy. 2014;76:276–83. https://doi.org/10.1016/j.energy.2014.08.00928.

    Article  Google Scholar 

  213. Hamed MH, Kabeel AE, Omara ZM, Sharshir SW. Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit. Desalination. 2015;358:9–17. https://doi.org/10.1016/j.desal.2014.12.005.

    Article  CAS  Google Scholar 

  214. Choi SH. Thermal type seawater desalination with barometric vacuum and Sol. Energy Energy. 2017;141:1332–49. https://doi.org/10.1016/j.energy.2017.11.00722.

    Article  Google Scholar 

  215. Hammadi SH. Theoretical analysis of humidification - Dehumidification process in an open type solar desalination system. Case Stud Therm Eng. 2018;12:843–51. https://doi.org/10.1016/j.csite.2018.09.00947.

    Article  Google Scholar 

  216. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2020;140:825–34. https://doi.org/10.1007/s10973-019-08878-226.

    Article  CAS  Google Scholar 

  217. Ashtiani S, Hormozi F. Design improvement in a stepped solar still based on entropy generation minimization. J Therm Anal Calorim. 2020;140:1095–106. https://doi.org/10.1007/s10973-019-08580-32.

    Article  CAS  Google Scholar 

  218. Dashtban M, Tabrizi FF. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination. 2011;279:415–22. https://doi.org/10.1016/j.desal.2011.06.0445.

    Article  CAS  Google Scholar 

  219. Faegh M, Shafii MB. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination. 2017;409:128–35.

    Article  CAS  Google Scholar 

  220. Arunkumar T, Kabeel AE. Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination. 2017;414:46–50. https://doi.org/10.1016/j.desal.2017.03.035.

    Article  CAS  Google Scholar 

  221. Ouar MLA, Sellami MH, Meddour SE, Touahir R, Guemari S, Loudiyi K. Experimental yield analysis of groundwater solar desalination system using absorbent materials. Groundw Sustain Dev. 2017;5:261–7. https://doi.org/10.1016/j.gsd.2017.08.00172.

    Article  Google Scholar 

  222. Dsilva Winfred Rufuss D, Suganthi L, Iniyan S, Davies PA. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod. 2018;192:9–29.

    Article  CAS  Google Scholar 

  223. Winfred Rufuss DD, Iniyan S, Suganthi L, Pa D. Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still application for productivity enhancement. Energy Procedia. 2017;141:45–9. https://doi.org/10.1016/j.egypro.2017.11.009.

    Article  CAS  Google Scholar 

  224. Kabeel AE, El-Samadony YAF, El-Maghlany WM. Comparative study on the solar still performance utilizing different PCM. Desalination. 2018;432:89–96. https://doi.org/10.1016/j.desal.2018.01.01653.

    Article  CAS  Google Scholar 

  225. Abu-Arabi M, Al-harahsheh M, Mousa H, Alzghoul Z. Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector. Desalination. 2018;448:60–8. https://doi.org/10.1016/j.desal.2018.09.0202.

    Article  CAS  Google Scholar 

  226. Xu J, Xu F, Qian M, Li Z, Sun P, Hong Z, et al. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy. 2018;53:425–31. https://doi.org/10.1016/j.nanoen.2018.08.06796.

    Article  CAS  Google Scholar 

  227. Zong L, Li M, Li C. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy. 2018;50:308–15. https://doi.org/10.1016/j.nanoen.2018.05.042.

    Article  CAS  Google Scholar 

  228. Chen W, Zou C, Li X, Liang H. Application of recoverable carbon nanotube nanofluids in solar desalination system: An experimental investigation. Desalination. 2019. https://doi.org/10.1016/j.desal.2017.09.025.

    Article  Google Scholar 

  229. Sathish Kumar TR, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101–12. https://doi.org/10.1007/s10973-018-7882-724.

    Article  CAS  Google Scholar 

  230. Kabeel AE, Sathyamurthy R, El-Agouz SA, Muthumanokar A, El-Said EMS. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019;138:3987–95. https://doi.org/10.1007/s10973-019-08561-612.

    Article  CAS  Google Scholar 

  231. Dileep K, Arun KR, Dishnu D, Srinivas M, Jayaraj S. Numerical studies on the effect of location and number of containers on the phase transition of PCM-integrated evacuated tube solar water heater. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09151-27.

    Article  Google Scholar 

  232. Suresh C, Shanmugan S. Effect of water flow in a solar still using novel materials. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08449-529.

    Article  Google Scholar 

  233. Sakthivel TG, Arjunan TV. Thermodynamic performance comparison of single slope solar stills with and without cotton cloth energy storage medium. J Therm Anal Calorim. 2019;137:351–60. https://doi.org/10.1007/s10973-018-7909-022.

    Article  CAS  Google Scholar 

  234. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08645-317.

    Article  Google Scholar 

  235. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888. https://doi.org/10.1016/j.jclepro.2019.11888814.

    Article  CAS  Google Scholar 

  236. Li F, Sheikholeslami M, Dara RN, Jafaryar M, Shafee A, Nguyen-Thoi T, et al. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process. J Mol Liq. 2020;297:111939. https://doi.org/10.1016/j.molliq.2019.11193913.

    Article  CAS  Google Scholar 

  237. Rashidi S, Shamsabadi H, Esfahani JA, Harmand S. A review on potentials of coupling PCM storage modules to heat pipes and heat pumps. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08930-120.

    Article  Google Scholar 

  238. Dhivagar R, Mohanraj M, Hidouri K, Belyayev Y. Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09766-w6.

    Article  Google Scholar 

  239. Nayi KH, Modi KV. Effect of cost-free energy storage material and saline water depth on the performance of square pyramid solar still: a mathematical and experimental study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09598-816.

    Article  Google Scholar 

  240. Sellami MH, Touahir R, Guemari S, Loudiyi K. Use of Portland cement as heat storage medium in solar desalination. Desalination. 2016;398:180–8. https://doi.org/10.1016/j.desal.2016.07.02786.

    Article  CAS  Google Scholar 

  241. Fujiwara M, Kikuchi M. Solar desalination of seawater using double-dye-modified PTFE membrane. Water Res. 2017;127:96–103. https://doi.org/10.1016/j.watres.2017.10.01538.

    Article  CAS  PubMed  Google Scholar 

  242. Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2020;141:1993–9. https://doi.org/10.1007/s10973-019-08858-628.

    Article  CAS  Google Scholar 

  243. Panchal H, Sathyamurthy R, Kabeel AE, El-Agouz SA, Rufus DSS, Arunkumar T, et al. Annual performance analysis of adding different nanofluids in stepped solar still. J Therm Anal Calorim. 2019;138:3175–82. https://doi.org/10.1007/s10973-019-08346-x18.

    Article  CAS  Google Scholar 

  244. Modi KV, Jani HK, Gamit ID. Impact of orientation and water depth on productivity of single - basin dual - slope solar still with ­ Al2O3 and CuO nanoparticles. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09351-115.

    Article  Google Scholar 

  245. Rabbi HMF, Sahin AZ. Performance improvement of solar still by using hybrid nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10155-619.

    Article  Google Scholar 

  246. Al-Ismaily HA, Probert SD. Solar-desalination prospects for the sultanate of Oman. Appl Energy. 1995;52:341–68. https://doi.org/10.1016/0306-2619(95)00021-6.

    Article  CAS  Google Scholar 

  247. Abu-Arabi M, Zurigat Y. Year-round comparative study of three types of solar desalination units. Desalination. 2005;172:137–43. https://doi.org/10.1016/j.desal.2004.05.011.

    Article  CAS  Google Scholar 

  248. Wang Q, Zhu Z, Zheng H. Investigation of a floating solar desalination film. Desalination. 2018;447:43–54. https://doi.org/10.1016/j.desal.2018.09.00595.

    Article  CAS  Google Scholar 

  249. Farid M, Al-hajajb AW. With a humidification-dehumidification cycle. Desalination. 1996;106:427–9. https://doi.org/10.1016/S0011-9164(96)00141-5.

    Article  CAS  Google Scholar 

  250. Minasian AN, Al-Karaghouli AA, Habeeb SK. Utilization of a cylindrical parabolic reflector for desalination of saline water. Energy Convers Manag. 1997;38:701–4. https://doi.org/10.1016/S0196-8904(96)00062-3.

    Article  CAS  Google Scholar 

  251. Minasian AN, Al-Karaghouli AA, Habeeb SK. Utilization of a cylindrical parabolic reflector for desalination of saline water. Energy Convers Manage. 1997;38(7):701–4. https://doi.org/10.1016/S0196-8904(96)00062-3.

    Article  CAS  Google Scholar 

  252. El-Nashar AM. Validating the performance simulation program “SOLDES” using data from an operating solar desalination plant. Desalination. 2000;130:235–53. https://doi.org/10.1016/S0011-9164(00)00089-8.

    Article  CAS  Google Scholar 

  253. Gomri R. Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer. Desalination. 2009;249:188–96. https://doi.org/10.1016/j.desal.2009.01.02139.

    Article  CAS  Google Scholar 

  254. Schwarzer K, Vieira da Silva E, Hoffschmidt B, Schwarzer T. A new solar desalination system with heat recovery for decentralised drinking water production. Desalination. 2009;248:204–11. https://doi.org/10.1016/j.desal.2008.05.05685.

    Article  CAS  Google Scholar 

  255. El-Nashar AM. Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant. Desalination. 2009;239:66–81. https://doi.org/10.1016/j.desal.2008.03.00733.

    Article  CAS  Google Scholar 

  256. Jiang J, Tian H, Cui M, Liu L. Proof-of-concept study of an integrated solar desalination system. Renew Energy. 2009;34:2798–802. https://doi.org/10.1016/j.renene.2009.06.00251.

    Article  CAS  Google Scholar 

  257. Maroo SC, Goswami DY. Theoretical analysis of a single-stage and two-stage solar driven flash desalination system based on passive vacuum generation. Desalination. 2009;249:635–46. https://doi.org/10.1016/j.desal.2008.12.05565.

    Article  CAS  Google Scholar 

  258. Khayet M, Essalhi M, Armenta-Déu C, Cojocaru C, Hilal N. Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology. Desalination. 2010;261:284–92. https://doi.org/10.1016/j.desal.2010.04.01059.

    Article  CAS  Google Scholar 

  259. Omara ZM, Eltawil MA, ElNashar ESA. A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination. 2013;325:56–64. https://doi.org/10.1016/j.desal.2013.06.02471.

    Article  CAS  Google Scholar 

  260. Byrne P, Fournaison L, Delahaye A, Ait Oumeziane Y, Serres L, Loulergue P, et al. A review on the coupling of cooling, desalination and solar photovoltaic systems. Renew Sustain Energy Rev. 2015;47:703–17. https://doi.org/10.1016/j.rser.2015.03.083.

    Article  CAS  Google Scholar 

  261. Shafii MB, Jahangiri Mamouri S, Lotfi MM, Jafari MH. A modified solar desalination system using evacuated tube collector. Desalination. 2016;396:30–8. https://doi.org/10.1016/j.desal.2016.05.030.

    Article  CAS  Google Scholar 

  262. Hamed OA, Kosaka H, Bamardouf KH, Al-Shail K, Al-Ghamdi AS. Concentrating solar power for seawater thermal desalination. Desalination. 2016;396:70–8. https://doi.org/10.1016/j.desal.2016.06.00846.

    Article  CAS  Google Scholar 

  263. Du B, Gao J, Zeng L, Su X, Zhang X, Yu S, et al. Area optimization of solar collectors for adsorption desalination. Sol Energy. 2017;157:298–308. https://doi.org/10.1016/j.solener.2017.08.03227.

    Article  Google Scholar 

  264. Shalaby SM, Bek MA, Kabeel AE. Design recommendations for humidification-dehumidification solar water desalination systems. Energy Procedia. 2017;107:270–4. https://doi.org/10.1016/j.egypro.2016.12.14888.

    Article  Google Scholar 

  265. Fathy M, Hassan H, Salem AM. Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Sol Energy. 2018;163:54–61. https://doi.org/10.1016/j.solener.2018.01.04337.

    Article  Google Scholar 

  266. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135:763–86. https://doi.org/10.1007/s10973-018-7183-13.

    Article  CAS  Google Scholar 

  267. Ekiciler R, Arslan K, Turgut O, Kurşun B. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09717-59.

    Article  Google Scholar 

  268. Nawayseh NK, Farid MM, Omar AA, Al-Hallaj SM, Tamimi AR. A simulation study to improve the performance of a solar humidification-dehumidification desalination unit constructed in Jordan. Desalination. 1997;109:277–84.

    Article  CAS  Google Scholar 

  269. Dai YJ, Zhang HF. Experimental investigation of a solar desalination unit with humidification and dehumidification. Desalination. 2000;130:169–75. https://doi.org/10.1016/S0011-9164(00)00084-9.

    Article  CAS  Google Scholar 

  270. Yuan G, Wang Z, Li H, Li X. Experimental study of a solar desalination system based on humidification-dehumidification process. Desalination. 2011;277:92–8. https://doi.org/10.1016/j.desal.2011.04.002.

    Article  CAS  Google Scholar 

  271. Chang Z, Zheng H, Yang Y, Su Y, Duan Z. Experimental investigation of a novel multi-effect solar desalination system based on humidification-dehumidification process. Renew Energy. 2014;69:253–9. https://doi.org/10.1016/j.renene.2014.03.04818.

    Article  Google Scholar 

  272. Zamen M, Soufari SM, Vahdat SA, Amidpour M, Zeinali MA, Izanloo H, et al. Experimental investigation of a two-stage solar humidification-dehumidification desalination process. Desalination. 2014;332:1–6. https://doi.org/10.1016/j.desal.2013.10.018.

    Article  CAS  Google Scholar 

  273. Khalil A, El-Agouz SA, El-Samadony YAF, Abdo A. Solar water desalination using an air bubble column humidifier. Desalination. 2015;372:7–16. https://doi.org/10.1016/j.desal.2015.06.01058.

    Article  CAS  Google Scholar 

  274. Srithar K, Rajaseenivasan T. Performance analysis on a solar bubble column humidification dehumidification desalination system. Process Saf Environ Prot. 2017;105:41–50. https://doi.org/10.1016/j.psep.2016.10.00292.

    Article  CAS  Google Scholar 

  275. Srithar K, Rajaseenivasan T. Recent fresh water augmentation techniques in solar still and HDH desalination—a review. Renew Sustain Energy Rev. 2018;82:629–44. https://doi.org/10.1016/j.rser.2017.09.05693.

    Article  Google Scholar 

  276. Santosh R, Arunkumar T, Velraj R, Kumaresan G. Technological advancements in Solar Energy driven humidification-dehumidification desalination systems—a review. J Clean Prod. 2019;207:826–45. https://doi.org/10.1016/j.jclepro.2018.09.247.

    Article  Google Scholar 

  277. Reddy KS, Kumar KR, O’Donovan TS, Mallick TK. Performance analysis of an evacuated multi-stage solar water desalination system. Desalination. 2012;288:80–92. https://doi.org/10.1016/j.desal.2011.12.01680.

    Article  CAS  Google Scholar 

  278. Liu ZH, Hu RL, Chen XJ. A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes. Renew Energy. 2014;64:26–33. https://doi.org/10.1016/j.renene.2013.10.04062.

    Article  Google Scholar 

  279. Liu ZH, Guan HY, Wang GS. Performance optimization study on an integrated solar desalination system with multi-stage evaporation/heat recovery processes. Energy. 2014;76:1001–10. https://doi.org/10.1016/j.energy.2014.09.01761.

    Article  Google Scholar 

  280. Glueckstern P. Potential uses of Sol Energy for seawater desalination. Desalination. 1995;10:111–20.

    Google Scholar 

  281. Harrison DG, Ho GE, Mathew K. Desalination using renew energy in Australia. Renew Energy. 1996;8(1–4):509–13. https://doi.org/10.1016/0960-1481(96)88909-9.

    Article  CAS  Google Scholar 

  282. Reali M, De Gerloni M, Sampaolo A. Submarine and underground reverse osmosis schemes for energy-efficient seawater desalination. Desalination. 1997;109:269–75. https://doi.org/10.1016/S0011-9164(97)00073-8.

    Article  CAS  Google Scholar 

  283. Al Suleimani Z, Nair VR. Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman. Appl Energy. 2000;65:367–80. https://doi.org/10.1016/S0306-2619(99)00100-2.

    Article  CAS  Google Scholar 

  284. Manolakos D, Kosmadakis G, Kyritsis S, Papadakis G. On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination. Sol Energy. 2009;83:646–56. https://doi.org/10.1016/j.solener.2008.10.01463.

    Article  CAS  Google Scholar 

  285. Kasaeian A, Rajaee F, Yan WM. Osmotic desalination by Solar Energy: a critical review. Renew Energy. 2019;134:1473–90. https://doi.org/10.1016/j.renene.2018.09.038.

    Article  CAS  Google Scholar 

  286. Milow B, Zarza E. Advanced MED solar desalination plants Configurations, costs, future—Seven years of experience at the Plataforma Solar de Almeria (Spain). Desalination. 1997;108:51–8. https://doi.org/10.1016/S0011-9164(97)00008-8.

    Article  CAS  Google Scholar 

  287. Rice W, Chau DSC. Freeze desalination using hydraulic refrigerant compressors. Desalination. 1997;109:157–64. https://doi.org/10.1016/S0011-9164(97)00061-1.

    Article  CAS  Google Scholar 

  288. Gude VG, Nirmalakhandan N. Combined desalination and solar-assisted air-conditioning system. Energy Convers Manag. 2008;49:3326–30. https://doi.org/10.1016/j.enconman.2008.03.030.

    Article  Google Scholar 

  289. Eltawil MA, Zhengming Z. Wind turbine-inclined still collector integration with solar still for brackish water desalination. Desalination. 2009;249:490–7. https://doi.org/10.1016/j.desal.2008.06.02935.

    Article  CAS  Google Scholar 

  290. Kargar Sharif Abad H, Ghiasi M, Jahangiri Mamouri S, Shafii MB. A novel integrated solar desalination system with a pulsating heat pipe. Desalination. 2013;311:206–10. https://doi.org/10.1016/j.desal.2012.10.029.

    Article  CAS  Google Scholar 

  291. Kabeel AE, El-Said EMS. A hybrid solar desalination system of air humidification-dehumidification and water flashing evaporation. Part I A Numer Invest Desalinat. 2013;320:56–72. https://doi.org/10.1016/j.desal.2013.04.016.

    Article  CAS  Google Scholar 

  292. Mitra S, Srinivasan K, Kumar P, Murthy SS, Dutta P. Solar driven Adsorption Desalination system. Energy Procedia. 2014;49:2261–9. https://doi.org/10.1016/j.egypro.2014.03.23968.

    Article  CAS  Google Scholar 

  293. Amin ZM, Hawlader MNA. Analysis of solar desalination system using heat pump. Renew Energy. 2015;74:116–23. https://doi.org/10.1016/j.renene.2014.07.02810.

    Article  CAS  Google Scholar 

  294. Siddiqui FR, Elminshawy NAS, Addas MF. Design and performance improvement of a solar desalination system by using solar air heater: Experimental and theoretical approach. Desalination. 2016;399:78–87. https://doi.org/10.1016/j.desal.2016.08.01591.

    Article  CAS  Google Scholar 

  295. Alsehli M, Choi JK, Aljuhan M. A novel design for a solar powered multistage flash desalination. Sol Energy. 2017;153:348–59. https://doi.org/10.1016/j.solener.2017.05.0829.

    Article  Google Scholar 

  296. Asayesh M, Kasaeian A, Ataei A. Optimization of a combined solar chimney for desalination and power generation. Energy Convers Manag. 2017;150:72–80. https://doi.org/10.1016/j.enconman.2017.08.00613.

    Article  Google Scholar 

  297. Ahmed FE, Hashaikeh R, Hilal N. Solar powered desalination – Technology, energy and future outlook. Desalination. 2019;453:54–76. https://doi.org/10.1016/j.desal.2018.12.0024.

    Article  CAS  Google Scholar 

  298. Yaqub U, Al-Nasser A, Sheltami T. Implementation of a hybrid wind-solar desalination plant from an Internet of Things (IoT) perspective on a network simulation tool. Appl Comput Informatics. 2019;15:7–11. https://doi.org/10.1016/j.aci.2018.03.00197.

    Article  Google Scholar 

  299. Rahbar K, Riasi A. Performance enhancement and optimization of solar chimney power plant integrated with transparent photovoltaic cells and desalination method. Sustain Cities Soc. 2019;46:101441. https://doi.org/10.1016/j.scs.2019.10144176.

    Article  Google Scholar 

  300. Riffat SB. Solar absorption system for water desalination. Renew Energy. 1995;6(101–6):82. https://doi.org/10.1016/0960-1481(94)00072-E.

    Article  Google Scholar 

  301. Akash BA, Al-Jayyousi OR, Mohsen MS. Multi-criteria analysis of non-conventional energy technologies for water desalination in Jordan. Desalination. 1997;114:1–12. https://doi.org/10.1016/S0011-9164(97)00148-3.

    Article  CAS  Google Scholar 

  302. Roca L, Guzmán JL, Berenguel M, Yebra L. Hybrid control for a solar desalination plant. IFAC Proc. 2009;3:20–5. https://doi.org/10.3182/20090916-3-ES-3003.00005.

    Article  Google Scholar 

  303. Al-Karaghouli A, Renne D, Kazmerski LL. Solar and wind opportunities for water desalination in the Arab regions. Renew Sustain Energy Rev. 2009;13:2397–407. https://doi.org/10.1016/j.rser.2008.05.007.

    Article  CAS  Google Scholar 

  304. Elminshawy NAS, Siddiqui FR, Addas MF. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy. Energy Convers Manag. 2016;126:608–21. https://doi.org/10.1016/j.enconman.2016.08.04431.

    Article  Google Scholar 

  305. Kabeel AE, Abdelgaied M, Mahmoud GM. Performance evaluation of continuous solar still water desalination system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09547-511.

    Article  Google Scholar 

  306. Szacsvay T, Hofer-noser P, Posnansky M. Technical and economic aspects of small-scale solar-pond- powered seawater desalination systems. 1999;122:185–93. https://doi.org/10.1016/S0011-9164(99)00040-5.

    Article  CAS  Google Scholar 

  307. Lu H, Walton JC, Swift AHP. Desalination coupled with salinity-gradient solar ponds. 2001;136:13–23. https://doi.org/10.1016/S0011-9164(01)00160-6.

    Article  CAS  Google Scholar 

  308. Caruso G, Naviglio A, Principi P, Ruffini E. High-energy efficiency desalination project using a full titanium desalination unit and a solar pond as the heat supply. Desalination. 2001;136:199–212. https://doi.org/10.1016/S0011-9164(01)00182-5.

    Article  CAS  Google Scholar 

  309. Voropoulos K, Mathioulakis E, Belessiotis V. Experimental investigation of the behavior of a solar still coupled with hot water storage tank. 2003;156. https://doi.org/https://doi.org/10.1016/S0011-9164(03)00362-X.

  310. Voropoulos K, Mathioulakis E, Belessiotis V. A hybrid solar desalination and water heating system. Desalination. 2004;164:189–95. https://doi.org/10.1016/S0011-9164(04)00177-8.

    Article  CAS  Google Scholar 

  311. Velmurugan V, Srithar K. Solar stills integrated with a mini solar pond—analytical simulation and experimental validation. 2007;216:232–41. https://doi.org/https://doi.org/10.1016/j.desal.2006.12.012.

  312. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Salem N. Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Convers Manage. 2008;49:2839–48. https://doi.org/10.1016/j.enconman.2008.03.002.

    Article  CAS  Google Scholar 

  313. Velmurugan V, Mandlin J, Stalin B, Srithar K. Augmentation of saline streams in solar stills integrating with a mini solar pond. DES. 2009;249:143–9. https://doi.org/10.1016/j.desal.2009.06.01619.

    Article  CAS  Google Scholar 

  314. Saleh A, Qudeiri JA, Al-nimr MA. Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea. Energy. 2011;36:922–31. https://doi.org/10.1016/j.energy.2010.12.01816.

    Article  Google Scholar 

  315. Ali MI, Joseph B, Karthikeyan R, Yuvaraj R. Performance investigation of solar still integrated to solar pond. Bonfring Int J Power Syst Integr Circuits. 2012;2:1–7.

    Google Scholar 

  316. Date A, Alam F, Khaghani A, Akbarzadeh A. Investigate the potential of using trilateral flash cycle for combined desalination and power generation integrated with salinity gradient solar ponds. 2012;49:42–9.

    CAS  Google Scholar 

  317. Farahbod F, Mowla D, Nasr MRJ, Soltanieh M. Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process. Sol Energy. 2013;97:138–46. https://doi.org/10.1016/j.solener.2013.02.03310.

    Article  CAS  Google Scholar 

  318. Appadurai M, Velmurugan V. Performance analysis of fin type solar still integrated with fin type mini solar pond. Sustain Energy Technol Assess. 2015;9:30–6. https://doi.org/10.1016/j.seta.2014.11.0013.

    Article  Google Scholar 

  319. Salata F, Coppi M. A first approach study on the desalination of sea water using heat transformers powered by solar ponds. Appl Energy. 2014;136:611–8. https://doi.org/10.1016/j.apenergy.2014.09.07915.

    Article  Google Scholar 

  320. Dalave AM, Chakrabarty SG. Experimental investigation for performance enhancement of solar still using solar pond. Int J Appl Sci Eng Technol. 2016;4:159–65.

    Google Scholar 

  321. Rahaoui K, Chet L, Pong L, Mediouri W. Sustainable membrane distillation coupled with solar pond. Energy Procedia. 2017;110:414–9. https://doi.org/10.1016/j.egypro.2017.03.16213.

    Article  Google Scholar 

  322. Aung NN, Soe MM. Performance and numerical analysis of single basin solar still. Appl Energy. 2017;7:821–43.

    Google Scholar 

  323. Dhindsa GS, Mittal MK. Experimental study of basin type vertical multiple e ff ect di ff usion solar still integrated with mini solar pond to generate nocturnal distillate. Energy Convers Manag. 2018;165:669–80. https://doi.org/10.1016/j.enconman.2018.03.1009.

    Article  Google Scholar 

  324. Rostamzadeh H, Namin AS, Nourani P, Amidpoura M, Ghaebi H. Feasibility investigation of a humidification-dehumidification (HDH) desalination system with thermoelectric generator operated by a salinity-gradient solar pond. Desalination. 2019;462:1–18. https://doi.org/10.1016/j.desal.2019.04.001.

    Article  CAS  Google Scholar 

  325. Bisht S, Dhindsa GS, Sehgal SS. Augmentation of diurnal and nocturnal distillate of solar still having wicks in the basin and integrated with solar pond. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.05.732.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Elsevier publishing company for providing license to use the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sathish.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, D., Jegadheeswaran, S. Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review. J Therm Anal Calorim 146, 1923–1969 (2021). https://doi.org/10.1007/s10973-021-10579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10579-8

Keyword

Navigation