Skip to main content
Log in

Analysis of Cattaneo–Christov heat flux in Jeffery fluid flow with heat source over a stretching cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This analysis explores stagnation point in Jeffery liquid flow over a stretchable cylinder. Heat and mass transfer are investigated through Cattaneo–Christov model with double stratification, heat source and thermal relaxation. Moreover, the flow of liquid is caused by stretchable cylinder. Cylindrical coordinates are used for mathematical formulations. The acquired boundary layer problems for stretchable cylinder are dealt through homotopy analysis method. Results of variables appeared in governing equations are disclosed through graphs for flow, temperature, concentration and skin friction. The findings of the study show that higher values of ratio parameter and Deborah number in terms of relaxation time reduce magnitude of drag coefficient while reverse trend is noted for larger Deborah number in terms of retardation time and curvature parameter. Comparison of present work with previous published date is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Waqas M, Hayat T, Shehzad SA, Qasim M, Obaidat S. Radiative flow of Jeffrey fluid in a porous medium with power law heat flux and heat source. Nucl Eng. 2012;243:15–9.

    Article  Google Scholar 

  2. Qasim M, Hayat T, Shehzad SA, Alsaedi A, Hussain M, Solamy FA, Ramzan M. Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet. PLoS ONE. 2014;9:e103719.

    Article  Google Scholar 

  3. Hayat T, Farooq M, Alsaedi A, Gull N. MHD flow of a Jeffrey fluid with Newtonian heating. J Mech. 2015;33:1–11.

    Google Scholar 

  4. Hayat T, Imtiaz M, Alsaedi A. MHD stagnation point flow of a Jeffrey nanofluid with Newtonian heating. J Aerosp Eng 2015; 04015063

  5. Mahanthesh B. Magnetohydrodynamic flow of Carreau liquid over a stretchable sheet with a variable thickness. Multidiscip Model Mater Struct. 2020;5:1277–93.

  6. Gireesha BJ, Kumar PBS, Mahanthesh B, Shehzad SA, Rauf A. Nonlinear 3D flow of Casson–Carreau fluids with homogeneous-heterogeneous reactions: a comparative study. Res Phys. 2017;7:2762–70.

    Google Scholar 

  7. Mahanthesh B, Joseph TV. Dynamics of magneto-nano third-grade fluid with Brownian motion and thermophoresis effects in the pressure type die. J Nanofluids. 2019;8:870–5.

    Article  Google Scholar 

  8. Mahanthesh B, Gireesha BJ. Dual solutions for unsteady stagnation-point flow of Prandtl nanofluid past a stretching/shrinking plate. Defect Diffusion Forum, Trans Tech Publications Ltd. 2018;388:124–34.

  9. Ali R, Farooq A, Shahzad A, Benim AC, Iqbal A, Razzaq M. Computational approach on three-dimensional flow of couple-stress fluid with convective boundary conditions. Phys A Stat Mech Appl. 2020;553:124056.

  10. Ahmed J, Shahzad A, Begum A, Ali R, Siddiqui N. Effects of inclined Lorentz forces on boundary layer flow of Sisko fluid over a radially stretching sheet with radiative heat transfer. J Braz Soc Mech Sci Eng. 2017;39:3039–50.

    Article  CAS  Google Scholar 

  11. Ahmed J, Mahmood T, Iqbal Z, Shahzad A, Ali R. Axisymmetric flow and heat transfer over an unsteady stretching sheet in power law fluid. J Mol Liq. 2016;221:386–93.

    Article  CAS  Google Scholar 

  12. Hiemenz K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Int J Dingler’s Polytech. 1911;326:321–4.

    Google Scholar 

  13. Shehzad SA, Hayat T, Waqas M, Alsaedi A. Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition. J Mech. 2013;29:403–9.

    Article  Google Scholar 

  14. Abbas Z, Sheikh M, Pop I. Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous-heterogeneous reactions. J Taiwan Inst Chem Eng. 2015;55:69–75.

    Article  CAS  Google Scholar 

  15. Ganji DD, Malvandi A, Hedayati F. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technol. 2014;253:377–84.

    Article  Google Scholar 

  16. Khan MI, Hayat T, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbonwater nanofluid. Comput Method Appl Mech Eng. 2017;315:1011–24.

    Article  Google Scholar 

  17. Farooq M, Hayat T, Khan MI, Alsaedi A, Farooq M. Thermally stratified stretching flow with Cattaneo–Christov heat flux. Int J Heat Mass Transf. 2017;106:289–94.

    Article  Google Scholar 

  18. Makinde OD, Omojola MT, Mahanthesh B, Alao FI, Adegbie KS, Animasaun IL, Wakif A, Sivaraj R, Tshehla MS. Significance of buoyancy, velocity index and thickness of an upper horizontal surface of a paraboloid of revolution: the case of non-Newtonian Carreau fluid. In Defect and Diffusion Forum, Trans Tech. Publications Ltd 2018;387;550–561.

  19. Shahzad A, Ali R, Kamran M, Khan SUD, Khan SD, Farooq A. Axisymmetric flow with heat transfer over exponentially stretching sheet: a computational approach. Phys A Stat Mech Appl. 2020;554:124242.

    Article  CAS  Google Scholar 

  20. Shahzad A, Ali R, Hussain M, Kamran M. Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet. Alex Eng J. 2017;56:35–41.

    Article  Google Scholar 

  21. Fourier JBJ. Theorie Analytique De La Chaleur, Pari 1822.

  22. Cattaneo C. Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia. 1948;3:83–101.

  23. Franchi F, Straughan B. Thermal convection at low temperature. J Non-Equilib Thermodyn. 1994;19:368–74.

    CAS  Google Scholar 

  24. Puri P, Kythe PK. Discontinuities in velocity gradients and temperature in the Stoke’s first problem with non classical heat conduction. Q Appl Math. 1997;55:167–76.

    Article  Google Scholar 

  25. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  26. Han S, Zheng I, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. App Math Lett. 2014;38:87–93.

    Article  Google Scholar 

  27. Hayat T, Khan MI, Farooq M, Alsaidi A, Waqas M, Yasmeen T. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf. 2016;99:706–10.

    Article  Google Scholar 

  28. Ramadevi B, Kumar KA, Sugunamma V, Reddy JVR, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Thermal Anal Calorim. 2020;139:1379–93.

    Article  CAS  Google Scholar 

  29. Bhattacharyya A, Seth GS, Kumar R, Chamkha AJ. Simulation of Cattaneo–Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. J Thermal Anal Calorim. 2020;13:1655–70.

    Article  Google Scholar 

  30. Sharma B, Kumar S, Cattani C, Baleanu D. Nonlinear dynamics of Cattaneo–Christov heat flux model for third-grade power-law fluid. J Comput Nonlinear Dyn. 2020;15:011009.

  31. Mahanthesh B, Mabood F, Gireesha BJ, Gorla RSR. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface. Eur Phys J Plus. 2017;132:1–18.

    Article  CAS  Google Scholar 

  32. Mahanthesh B, Gireesha BJ, Raju CSK. Cattaneo–Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source. Inform Med Unlocked. 2017;9:26–34.

    Article  Google Scholar 

  33. Animasaun IL, Koriko OK, Mahanthesh B, Dogonchi AS. A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles. Z für Naturforschung A. 2019;74:879–904.

    Article  CAS  Google Scholar 

  34. Hussain Z. Heat transfer through temperature dependent viscosity hybrid nanofluid subject to homogeneous–heterogeneous reactions and melting condition: a comparative study. Phys Scr. 2021;96:015210.

    Article  CAS  Google Scholar 

  35. Ibrahim W, Makinde OD. The effect of double stratification on boundary layer flow and heat transfer of nanofluid over a vertical plate. Comput Fluids. 2013;86:433–41.

    Article  Google Scholar 

  36. Hayat T, Hussain Z, Alsaedi A. Influence of heterogeneous–homogeneous reactions in thermally stratified stagnation point flow of an Oldroyd-B fluid. Res Phys. 2016;6:1161–7.

    Google Scholar 

  37. Hayat T, Shah F, Hussain Z, Alsaedi A. Outcomes of double stratification in Darcy–Forchheimer MHD flow of viscoelastic nanofluid. J Braz Soc Mech Sci Eng. 2018;40:145.

    Article  Google Scholar 

  38. Hussain Z, Hayat T, Alsaedi A, Ahmad B. Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput Methods App Mech Eng. 2018;329:40–54.

    Article  Google Scholar 

  39. Waqas M, Dogonchi AS, Shehzad SA, Khan MI, Hayat T, Alsaedi A. Nonlinear convection and joule heating impacts in magneto-thixotropic nanofluid stratified flow by convectively heated variable thicked surface. J Mol Liq. 2020;300:111945.

    Article  CAS  Google Scholar 

  40. Rawat SK, Upreti H, Kumar M. Thermally stratified nanofluid flow over porous surface cone with Cattaneo–Christov heat flux approach and heat generation/absorption. SN Appl Sci. 2020;2:302.

    Article  CAS  Google Scholar 

  41. Abro AK, Siyal A, Atangana A. Thermal stratification of rotational second-grade fluid through fractional differential operators. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09312-8.

  42. Liao SJ. Beyond perturbation: introduction to homotopy analysis method. Chapman Hall: CRC Press; 2003.

    Book  Google Scholar 

  43. Zhao Y, Lin Z, Liu Z, Liao S. The improved homotopy analysis method for the Thomas-Fermi equation. Appl Math Comput. 2012;218:8363–9.

    Google Scholar 

  44. Liao S. Homotopic analysis method in nonlinear differential equations. Heidelberg: Springer; 2012.

    Book  Google Scholar 

  45. Hayat T, Hussain Z, Alsaedi A, Hobiny A. Computational analysis for velocity slip and diffusion species with carbon nanotubes. Res Phys. 2017;7:3049–58.

    Google Scholar 

  46. Hayat T, Qayyum S, Shehzad SA, Alsaedi A. Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics flow of Maxwell nanofluid towards a stretched surface. Res Phys. 2017;7:562–73.

    Google Scholar 

  47. Renuka A, Muthtamilselvan M, Doh DH, Cho GR. Entropy analysis and nanofluid past a double stretchable spinning disk using homotopy analysis method. Math Comput Simul. 2020;171:152–69.

    Article  Google Scholar 

  48. Pop SR, Grosan T, Pop I. Radiation effects on the flow near the stagnation point of a stretching sheet. Techn Mech. 2004;25:100–6.

    Google Scholar 

  49. Hayat T, Farooq M, Alsaedi A. Characteristics of homogeneous–heterogeneous reactions and melting heat transfer in the stagnation point flow of Jeffrey fluid. J Appl Fluid Mech. 2016;9:809–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakir Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Hussain, A., Anwar, M.S. et al. Analysis of Cattaneo–Christov heat flux in Jeffery fluid flow with heat source over a stretching cylinder. J Therm Anal Calorim 147, 3391–3402 (2022). https://doi.org/10.1007/s10973-021-10573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10573-0

Keywords

Navigation