Impact of magnetic field on the thermal properties of chemically synthesized Sm-Co nanoparticles based silicone oil nanofluid

Abstract

This work aims to study the enhanced thermal conductivity of silicone oil on increasing mass % of hard magnetic Sm-Co based nanoparticles (NPs) in the presence of external magnetic fields. Sm-Co NPs were synthesized using the low temperature 'Pechini-type sol–gel' process. The presence of mixed phases is evident through XRD, FESEM, and TEM. The average hydrodynamic size of Sm-Co NPs was measured 51 nm by DLS. The study of magnetization vs. magnetic field reveals the weak ferromagnetic ordering along with the paramagnetic behaviour of the Sm-Co NPs. Thermal conductivity enhancement of Sm-Co nanofluids showed an increasing trend with the rising particle concentration and magnetic flux density. A high thermal conductivity enhancement of ~ 373% is reported at 15 mass % concentration of Sm-Co nanofluids and at a magnetic flux density of 0.5 T. The mechanism behind this thermal conductivity enhancement in the presence of an externally applied magnetic field has been discussed on the basis of near field magneto-static interactions of the magnetic nanoparticles. Microstructural, magnetic, and heat transport studies of Sm-Co based MNFs are very useful for device applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

E :

Attractive or repulsive interaction energy

d sep :

Mean chain separation distance

H :

Magnetic field intensity

a :

Chain length

k B :

Boltzmann constant

T :

Temperature

\(\chi\) :

Magnetic susceptibility

\(\mu_{0}\) :

Permeability in air

\((\phi )\) :

Volume fraction

References:

  1. 1.

    Shojaeizadeh E, Veysi F, Goudarzi K, Feyzi M. Magnetoviscous effect investigation of water based Mn-Zn Fe2O4 magnetic nanofluid under the influence of magnetic field: an experimental study. J Magn Magn Mater. 2019;477:292–306.

    CAS  Article  Google Scholar 

  2. 2.

    Keblinski P. Thermal conductivity of nanofluids. Top Appl Phys. 2009;118:213–21.

    CAS  Article  Google Scholar 

  3. 3.

    Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J of Heat Transfer. 1999;121:280–9.

    CAS  Article  Google Scholar 

  4. 4.

    Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids-an overview. Renew Sustain Energy Rev. 2010;14:629–41.

    CAS  Article  Google Scholar 

  5. 5.

    Hemalatha J. A review of nanofluids: science and technology, S. K. Das, S. U. S. Choi, W. Yu, and T Pradeep. Mater Manuf Process. 2009;24:600–1.

    CAS  Article  Google Scholar 

  6. 6.

    Özerinç S, Kakaç S, Yazıcıoğlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluidics. 2010;8:145–70.

    Article  CAS  Google Scholar 

  7. 7.

    Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.

    CAS  Article  Google Scholar 

  8. 8.

    Chen H, Witharana S, Jin Y, Kim C, Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particulorogy. 2009;7:151–7.

    CAS  Article  Google Scholar 

  9. 9.

    Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  10. 10.

    Singh AK. Thermal conductivity of nanofluids. Defence Science Journal. 2008;58:600–7.

    CAS  Article  Google Scholar 

  11. 11.

    Nan CW, Shi Z, Lin Y. A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett. 2003;375:666–9.

    CAS  Article  Google Scholar 

  12. 12.

    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    CAS  Article  Google Scholar 

  13. 13.

    Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O. A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep. 2020;843:1–81.

    CAS  Article  Google Scholar 

  14. 14.

    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H. Recent advances in modeling and simulation of nanofluid flows–Part II: applications. Phys Reports. 2019;791:1–59.

    CAS  Article  Google Scholar 

  15. 15.

    Asadi A, Aberoumand S, Moradikazerouni A, Pourfattah F, Żyła G, Estellé P, Mahian O, Wongwises S, Nguyen HM, Arabkoohsar A. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: a state-of-the-art review. Powder Technol. 2019;352:209–26.

    CAS  Article  Google Scholar 

  16. 16.

    Erb RM, Yellen BB. Magnetic manipulation of colloidal particles. In nanoscale magnetic materials and applications. Boston, MA: Springer; 2009. p. 563–90.

    Google Scholar 

  17. 17.

    Odenbach S. Recent progress in magnetic fluid research. J Phys Condens Matter. 2007;16(32):1135.

    Article  CAS  Google Scholar 

  18. 18.

    Ganguly R, Puri IK. Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical. MEMS BioMEMS Appl, Adv Appl Mech. 2007;41:293–335.

    Article  Google Scholar 

  19. 19.

    Wr L, Nae-Hyun K. Principles of enhanced heat transfer. 2nd ed. Routledge: Taylor & Francis; 2005.

    Google Scholar 

  20. 20.

    Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38.

    CAS  Article  Google Scholar 

  21. 21.

    Krichler M, Odenbach S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J Magn Magn Mater. 2013;326:85–90.

    CAS  Article  Google Scholar 

  22. 22.

    Shima PD, Philip J. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C. 2011;115:20097–104.

    CAS  Article  Google Scholar 

  23. 23.

    Theres Baby T, Sundara R. Surfactant free magnetic nanofluids based on core-shell type nanoparticle decorated multiwalled carbon nanotubes. J Appl Phys. 2011;110(6):64325.

    Article  CAS  Google Scholar 

  24. 24.

    Parekh K, Lee HS. Experimental investigation of thermal conductivity of magnetic nanofluids. AIP Conf Proc. 2012;1447:385.

    CAS  Article  Google Scholar 

  25. 25.

    Gavili A, Zabihi F, Isfahani TD, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci. 2012;41:94–8.

    CAS  Article  Google Scholar 

  26. 26.

    Philip J, Shima PD, Raj B. Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology. 2008;19(30):305706.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys. 2010;107:1–4.

    Article  CAS  Google Scholar 

  28. 28.

    Haddad Z, Abid C, Oztop HF, Mataoui A. A review on how the researchers prepare their nanofluids. Int J Therm Sci. 2014;76:168–89.

    CAS  Article  Google Scholar 

  29. 29.

    Gharehkhani S, Shirazi SF, Jahromi SP, Sookhakian M, Baradaran S, Yarmand H, Oshkour AA, Kazi SN, Basirun WJ. Spongy nitrogen-doped activated carbonaceous hybrid derived from biomass material/graphene oxide for supercapacitor electrodes. Rsc Advances. 2015;5(51):40505–13.

    CAS  Article  Google Scholar 

  30. 30.

    Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40.

    CAS  Article  Google Scholar 

  31. 31.

    Fuskele V, Sarviya RM. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Mater Today: Proc. 2017;4(2):4049–60.

    Google Scholar 

  32. 32.

    Kaggwa A, Carson JK. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: a review of recent literature. Int Nano Lett. 2019;9:1–2.

    Article  Google Scholar 

  33. 33.

    Suresh G, Saravanan P, Babu DR. Effect of annealing on phase composition, structural and magnetic properties of Sm-Co based nanomagnetic material synthesized by sol-gel process. J Magn Magn Mater. 2012;324(13):2158–62.

    CAS  Article  Google Scholar 

  34. 34.

    Mackie AJ, Dean JS, Goodall R. Material and magnetic properties of Sm2 (Co, Fe, Cu, Zr) 17 permanent magnets processed by Spark Plasma Sintering. J Alloy Compd. 2019;770:765–70.

    CAS  Article  Google Scholar 

  35. 35.

    Chen H, Wang Y, Yao Y, Qu J, Yun F, Li Y, Ringer SP, Yue M, Zheng R. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence trade-off. Acta Mater. 2019;164:196–206.

    CAS  Article  Google Scholar 

  36. 36.

    Liu S. Sm–Co high-temperature permanent magnet materials. Chin Phys B. 2019;28(1):017501.

    CAS  Article  Google Scholar 

  37. 37.

    Raja A, Adhikary T, Al-Omari IA, Das GP, Ghosh S, Satapathy DK, Oraon A, Shield JE, Aich S. Rapidly solidified Sm-Co-Hf-B magnetic Nano-composites: Experimental and DFT studies. J Magn Mater. 2020;504:166645.

    CAS  Article  Google Scholar 

  38. 38.

    Goodarzi A, Sahoo Y, Swihart MT, Prasad PN. Aqueous ferrofluid of citric acid coated magnetite particles. MRS Online Proceedings Library Archive. 2003;789.

  39. 39.

    Zhu S, Yue J, Qin X, Wei Z, Liang Z, Adzic RR, Brankovic SR, Du Z, Shao M. The role of citric acid in perfecting platinum monolayer on palladium nanoparticles during the surface limited redox replacement reaction. J Electrochem Soc. 2016;163(12):D3040.

    CAS  Article  Google Scholar 

  40. 40.

    Panda RN, Shih JC, Chin TS. Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. J Magn Magn Mater. 2003;257:79–86.

    CAS  Article  Google Scholar 

  41. 41.

    Gajbhiye NS, Prasad S. Thermal decomposition of hexahydrated nickel iron citrate. Thermochim Acta. 1996;285:325–36.

    CAS  Article  Google Scholar 

  42. 42.

    Christodoulou CN, Takeshita T. Reaction of samarium with hydrogen and nitrogen samarium oxides. J Alloys Comp. 1992;190:99–106.

    CAS  Article  Google Scholar 

  43. 43.

    Deheri PK, Swaminathan V, Bhame SD, Liu Z, Ramanujan RV. Sol-gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem Mater. 2010;22:6509–651.

    CAS  Article  Google Scholar 

  44. 44.

    Jiu J, Ge Y, Li X, Nie L. Preparation of Co3O4 nanoparticles by a polymer combustion route. Mater Lett. 2002;54:260–3.

    CAS  Article  Google Scholar 

  45. 45.

    Wei XW, Zhu GX, Liu YJ, Ni YH, Song Y, Xu Z. Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem Mater. 2008;20:6248–53.

    CAS  Article  Google Scholar 

  46. 46.

    Souza NS, Rodrigues AD, Cardoso CA, Pardo H, Faccio R, Mombru AW, Galzerani JC, De Lima OF, Sergeenkov S, Araujo-Moreira FM. Physical properties of nanofluid suspension of ferromagnetic graphite with high Zeta potential. Phys Lett A. 2012;376:544–6.

    CAS  Article  Google Scholar 

  47. 47.

    Salopek B, Krasic D, Filipovic S. Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik. 1992;4:147.

    Google Scholar 

  48. 48.

    Tellez-Blanco JC, Kou XC, Grössinger R, Estevez-Rams E, Fidler J, Ma BM. Coercivity and magnetic anisotropy of sintered Sm2Co17-type permanent magnets. J Appl Phys. 1997;82:3928–33.

    CAS  Article  Google Scholar 

  49. 49.

    Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett. 2007;91:1–4.

    Google Scholar 

  50. 50.

    Katiyar A, Dhar P, Nandi T, Das SK. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. J Magn Magn Mater. 2016;419:588–99.

    CAS  Article  Google Scholar 

  51. 51.

    Katiyar A, Dhar P, Nandi T, Das SK. Enhanced heat conduction characteristics of Fe, Ni and Co nanofluids influenced by magnetic field. Exp Thermal Fluid Sci. 2016;78:345–53.

    CAS  Article  Google Scholar 

  52. 52.

    Laskar JM, Philip J, Raj B. Experimental evidence for reversible zippering of chains in magnetic nanofluids under external magnetic fields. Phys Rev. 2009;80:041401.

    Google Scholar 

  53. 53.

    Haghgooie R, Doyle PS. Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits. Phys Rev. 2007;75:061406.

    Google Scholar 

  54. 54.

    Gross M. Ground state of a dipolar fluid film. Phys Rev E. 1998;58:6124.

    CAS  Article  Google Scholar 

  55. 55.

    Martin JE, Odinek J, Halsey TC. Evolution of structure in a quiescent electrorheological fluid. Phys Rev Lett. 1992;69:1524–7.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Karvelas EG, Lampropoulos NK, Sarris IE. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®. Comput Methods Programs Biomed. 2017;142:21–30.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Benos LT, Karvelas EG, Sarris IE. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm Sci Eng Prog. 2019;11:263–71.

    Article  Google Scholar 

  58. 58.

    Myrovali E, Maniotis N, Makridis A, Terzopoulou A, Ntomprougkidis V, Simeonidis K, Sakellari D, Kalogirou O, Samaras T, Salikhov R, Spasova M. Arrangement at the nanoscale: effect on magnetic particle hyperthermia. Sci Rep. 2016;6:37934.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Karvelas EG, Lampropoulos NK, Benos LT, Karakasidis T, Sarris IE. On the magnetic aggregation of Fe3O4 nanoparticles. Comput Methods Programs Biomed. 2020;198:105778.

    PubMed  Article  Google Scholar 

  60. 60.

    Karvelas EG, Karakasidis TE, Sarris IE. Computational analysis of paramagnetic spherical Fe3O4 nanoparticles under permanent magnetic fields. Comput Mater Sci. 2018;154:464–71.

    CAS  Article  Google Scholar 

  61. 61.

    Koh I, Josephson L. Magnetic nanoparticle sensors. Sensors. 2009;9(10):8130–45.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41(11):4306–34.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Coey JM. Magnetism in future. J Magn Magn Mater. 2001;226:2107–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their affiliated institutions, namely, Indian Institute of Technology Kharagpur, West Bengal, India for providing the research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akash Oraon.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest with any individual or agency.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oraon, A., Das, B.P., Michael, M. et al. Impact of magnetic field on the thermal properties of chemically synthesized Sm-Co nanoparticles based silicone oil nanofluid. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-021-10572-1

Download citation

Keywords

  • Sol–gel process
  • Magnetic-nanofluids
  • Silicone oil
  • Magnetic field induced thermal conductivity