Skip to main content

A numerical–thermal–thermographic NDT evaluation of an ancient marquetry integrated with X-ray and XRF surveys

Abstract

Conservation of artworks is of paramount importance nowadays around the world. Clever conservation by using non-destructive testing techniques is highly appreciated by restorers and art historians. Among these, active infrared thermography needs the use of numerical simulations concerning the heat transfer from the heat source into the target. This, in order to gently heat the precious surface by avoiding any type of damage, such as colour changes and/or shrinkage and warpage effects, therefore, the understanding of the nature of the pigments, as well as the mapping of the support and eventual foreign materials is of primary importance in the survey. It is possible to accomplish these tasks by applying, e.g. X-Ray Fluorescence spectroscopy and radiography (X-Ray), respectively. Here, the latter techniques have been used on an ancient marquetry sample. Consequently, a thermographic inspection was performed, while a thermal–numerical simulation was implemented in ANSYS® environment. Numerical simulations were able to visualize some types of defects by calibrating the thermal inspection based on a comparison among defective and sound areas. Results demonstrated how such an integrated method is useful to provide robust information without damage to the work of art under restoration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    AgǀCult. Mibac, 60 mln nel 2019 ai possessori di beni culturali per restauri e interventi conservativi. 2019. https://agcult.it/a/6421/2019-02-25/mibac-60-mln-nel-2019-ai-possessori-di-beni-culturali-per-restauri-e-interventi-conservativi. Accessed 03 Oct 2019.

  2. 2.

    Government of Canada. Canadian Heritage. 2019. https://www.canada.ca/en/canadian-heritage.html. Accessed 03 Oct 2019.

  3. 3.

    United Nations Educational, Scientific and Cultural Organization (UNESCO). Cultural Heritage Administration. 2019. https://whc.unesco.org/en/partners/481. Accessed 03 Oct 2019.

  4. 4.

    Hamilton Jackson F. Intarsia and marquetry. In: Handbook for the designer and craftsman. Sands and company. 1903. http://www.survivorlibrary.com/library/intarsia_and_marquetry_1903.pdf. Accessed 04 Oct 2019.

  5. 5.

    Triboulot MC, Lavigne E, Monteau L, Boucher N, Pizzi A, Tekely P. The restoration of old wood furniture marquetry: protein glues, their analysis, upgrading and rehydration. Holzforsch Holzverw. 1996;48:61–5.

    CAS  Google Scholar 

  6. 6.

    Candoré JC, Bodnar JL, Detalle V, Grossel P. Non-destructive testing of works of art by stimulated infrared thermography. Eur Phys J-Appl Phys. 2012;57:21002.

    Article  Google Scholar 

  7. 7.

    Bodnar JL, Metayer JJ, Mouhoubi K, Detalle V. Non-destructive testing of works of art by terahertz analysis. Eur Phys J Appl Phys. 2013;64:21001-p1-21001-p8.

    Google Scholar 

  8. 8.

    Sfarra S, Theodorakeas P, Černecký J, Pivarčiová E, Perilli S, Koui M. Inspecting marquetries at different wavelengths: the preliminary numerical approach as aid for a wide-range of non-destructive tests. J Nondestr Eval. 2017;36:6.

    Article  Google Scholar 

  9. 9.

    Gutierrez PTV, Robinson SC. Determining the presence of spaltedwood in Spanish marquetry woodworks of the 1500s through the 1800s. Coatings. 2017;7:188.

    Article  CAS  Google Scholar 

  10. 10.

    Kosma K, Andrianakis M, Hatzigiannakis K, Tornari V. Digital holographic interferometry for cultural heritage structural diagnostics: a coherent and a low-coherence optical set-up for the study of a marquetry sample. Strain. 2018;54:e12263.

    Article  Google Scholar 

  11. 11.

    Tavakolian P, Sfarra S, Gargiulo G, Sivagurunathan K, Mandelis A. Photothermal coherence tomography for 3-D visualization and structural non-destructive imaging of a wood inlay. Infrared Phys Technol. 2018;91:206–13.

    Article  Google Scholar 

  12. 12.

    Chulkov A, Sfarra S, Saeed N, Peeters J, Ibarra-Castanedo C, Gargiulo G, Steenackers G, Maldague XPV, Omar MA, Vavilov V. Evaluating quality of marquetries by applying active IR thermography and advanced signal processing. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09326-2.

    Article  Google Scholar 

  13. 13.

    Wen C-M, Sfarra S, Gargiulo G, Yao Y. Thermographic data analysis for defect detection by imposing spatial connectivity and sparsity constraints in principal component thermography. IEEE Trans Ind Inform. 2020. https://doi.org/10.1109/TII.2020.3010273.

    Article  Google Scholar 

  14. 14.

    Sfarra S, Cheilakou E, Theodorakeas P, Paoletti D, Koui M. S.S Annunziata Church (L’Aquila, Italy) unveiled by -non and micro-destructive testing techniques. Appl Phys A Mater Sci Process. 2017;123:215.

    Article  CAS  Google Scholar 

  15. 15.

    Tortora M, Sfarra S, Chiarini M, Daniele V, Taglieri G, Cerichelli G. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Appl Surf Sci. 2016;387:971–85.

    CAS  Article  Google Scholar 

  16. 16.

    Sfarra S, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Bendada A, Maldague X. Non-destructive testing techniques to help the restoration of frescoes. Arab J Sci Eng. 2014;39:3461–80.

    Article  Google Scholar 

  17. 17.

    Wen C-M, Sfarra S, Gargiulo G, Yao Y. Edge-group sparse principal component thermography for defect detection in an ancient marquetry sample. Proceedings (MDPI). 2019;27:34.

    Article  Google Scholar 

  18. 18.

    Cesareo R, Buccolieri G, Castellano A, Lopes RT, De Assis JT, Ridolfi S, Brunetti A, Bustamante A. The structure of two-layered objects reconstructed using EDXRF-analysis and internal X-ray ratios. X-ray Spectrom. 2015;44:233–8.

    CAS  Article  Google Scholar 

  19. 19.

    Ridolfi S, Laurenzi Tabasso M, Askari Chaverdi A, Callieri P. The finishing technique of the stone monuments of Persepolis: further studies and new findings through the use of non-destructive analytical techniques. Archaeometry. 2019;61:272–81.

    CAS  Article  Google Scholar 

  20. 20.

    Sfarra S, Ibarra-Castanedo C, Ridolfi S, Cerichelli G, Ambrosini D, Paoletti D, Maldague X. Holographic interferometry (HI), infrared vision and x-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl Phys A Mater Sci Process. 2014;115:1041–56.

    CAS  Article  Google Scholar 

  21. 21.

    Ridolfi S. Portable EDXRF in a multi-technique approach for the analyses of paintings. Insight. 2017;59:273–5.

    Article  Google Scholar 

  22. 22.

    Shrestha R, Kim W. Non-destructive testing and evaluation of materials using active thermography and enhancement of signal to noise ratio through data fusion. Infrared Phys Technol. 2018;94:78–84.

    Article  Google Scholar 

  23. 23.

    Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography—part II: experimental investigation. Infrared Phys Technol. 2018;92:24–9.

    CAS  Article  Google Scholar 

  24. 24.

    Sfarra S, Cicone A, Yousefi B, Ibarra-Castanedo C, Perilli S, Maldague X. Improving the detection of thermal bridges in buildings via on-site infrared thermography: the potentialities of innovative mathematical tools. Energy Build. 2019;182:159–71.

    Article  Google Scholar 

  25. 25.

    Sfarra S, Regi M, Tortora M, Casieri C, Perilli S, Paoletti D. A multi-technique non-destructive approach for characterizing the state of conservation of ancient bookbindings. J Therm Anal Calorim. 2019;132:1367–87.

    Article  CAS  Google Scholar 

  26. 26.

    Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos Struct. 2002;58:521–8.

    Article  Google Scholar 

  27. 27.

    Maldague X, Marinetti S. Pulse phase infrared thermography. J Appl Phys. 1996;79:2694.

    CAS  Article  Google Scholar 

  28. 28.

    Sfarra S, Bendada A, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Maldague X. Santa Maria di Collemaggio Church (L’Aquila, Italy): historical reconstruction by non-destructive testing techniques. Int J Archit Herit. 2015;9:367–90.

    Article  Google Scholar 

  29. 29.

    Neuberger M. Lead oxide. 1st ed. Culver City (California): Hughes Aircraft Co.; 1967.

    Book  Google Scholar 

  30. 30.

    Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography—part I: simulation. Infrared Phys Technol. 2017;83:124–31.

    CAS  Article  Google Scholar 

  31. 31.

    Sfarra S, Yao Y, Zhang H, Perilli S, Scozzafava M, Avdelidis NP, Maldague XPV. Precious walls built in indoor environments inspected numerically and experimentally within long-wave infrared (LWIR) and radio regions. J Therm Anal Calorim. 2019;137:1083–111.

    CAS  Article  Google Scholar 

  32. 32.

    Peeters J, Ibarra-Castanedo C, Sfarra S, Maldague X, Dirckx JJJ, Steenackers G. Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT E Int. 2017;87:119–23.

    Article  Google Scholar 

  33. 33.

    Sfarra S, Perilli S, Paoletti D, Ambrosini D. Ceramics and defects: infrared thermography and numerical simulations. A wide-ranging view for quantitative analysis. J Therm Anal Calorim. 2015;123:43–62.

    Article  CAS  Google Scholar 

  34. 34.

    Perilli S, Regi M, Sfarra S, Nardi I. Comparative analysis of heat transfer for an advanced composite material used as insulation in the building field by means of Comsol Multiphysics® and Matlab® computer programs. Rev Rom Mat. 2016;46:185–95.

    Google Scholar 

  35. 35.

    Sfarra S, Ibarra-Castanedo C, Theodorakeas P, Avdelidis NP, Perilli S, Zhang H, Nardi I, Koui M, Maldague XPV. Evaluation of the state of conservation of mosaics: simulations and thermographic signal processing. Int J Therm Sci. 2017;117:287–315.

    Article  Google Scholar 

  36. 36.

    Dincer I, Zamfirescu C. Drying phenomena: theory and applications. 1st ed. Chichester (UK): Wiley; 2016.

    Google Scholar 

  37. 37.

    Harrison SM, Kaml I, Prokoratova V, Mazanek M, Kenndler E. Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bioanal Chem. 2005;382:1520–6.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    NPCS Board of Consultants & Engineers. The complete book on adhesives, glues & resins technology (with process & formulations). 2nd ed. Kamla Nagar (India): Asia Pacific Business Press Inc; 2017.

    Google Scholar 

  39. 39.

    Berhanu H. Determination of optimum condition for the production of commercially viable glue from tannery solid waste. Addis Ababa Institute of Technology (Dept. of Chemical Engineering). 2011. https://pdfs.semanticscholar.org/a680/a2dc5659add67f081e478bda1e55677097bc.pdf. Accessed 10 Oct 2019.

  40. 40.

    The Engineering ToolBox. 2020. https://www.engineeringtoolbox.com/air-properties-d_156.html. Accessed 03 Oct 2019.

  41. 41.

    Tremblay LP, Johnson MB, Wener-Zwanziger U, White MA. Relationship between thermal conductivity and structure of nacre from Haliotis fulgens. J Mater Res. 2011;26:1216–24.

    CAS  Article  Google Scholar 

  42. 42.

    Gerhard EM, Wang W, Li C, Guo J, Ozbolat IT, Rahn KM, Armstrong AD, Xia J, Qian G, Yang J. Design strategies and applications of nacre-based biomaterials. Acta Biomater. 2017;54:21–34.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Fuller ME. The structure and properties of down feathers and their use in the outdoor industry. School of Design (The University of Leeds). 2015. https://core.ac.uk/download/pdf/30268287.pdf. Accessed 10 Oct 2019.

  44. 44.

    Mason P. Density and structure of alpha-keratin. Nature. 1963;197:179–80.

    CAS  Article  Google Scholar 

  45. 45.

    Picard K, Thomas DW, Festa-Bianchet M, Belleville F, Laneville A. Differences in thermal conductivity of tropical and temperate bovid horns. Ecoscience. 1999;6:148–58.

    Article  Google Scholar 

  46. 46.

    Russell SJ. Handbook of nonwovens. 1st ed. Boca Raton (USA): CRC Press; 2007.

    Book  Google Scholar 

  47. 47.

    Sato K. Body temperature stability achieved by the large body mass of sea turtles. J Exp Biol. 2014;217:3607–14.

    PubMed  Article  Google Scholar 

  48. 48.

    Touloukian YS, Ho CY. Thermophysical properties of matter. 1st ed. NY (USA): IFI/Plenum Data Company; 1979.

    Google Scholar 

  49. 49.

    Bartlett AI, Hadden RM, Bisby LA. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 2019;55:1–49.

    Article  Google Scholar 

  50. 50.

    Boonmee N. A theoretical investigation of surface glowing ignition leading to gas flaming autoignition. Fire Saf Sci. 2005;8:139–50.

    Article  Google Scholar 

  51. 51.

    Maldague XPV. Theory and practice of infrared technology for non-destructive testing. 1st ed. NY (USA): Wiley-Interscience; 2001.

    Google Scholar 

  52. 52.

    Chulkov A, Sfarra S, Zhang H, Osman A, Szielasko K, Stumm C, Sarasini F, Fiorelli J, Maldague XPV, Vavilov VP. Evaluating thermal properties of sugarcane bagasse-based composites by using active infrared thermography and terahertz imaging. Infrared Phys Technol. 2019;97:432–9.

    CAS  Article  Google Scholar 

  53. 53.

    Sfarra S, Perilli S, Guerrini M, Bisegna F, Chen T, Ambrosini D. On the use of phase change materials applied on cork-coconut-cork panels: a thermophysical point of view concerning the beneficial effect in term of insulation properties. J Therm Anal Calorim. 2019;138:4061–90.

    CAS  Article  Google Scholar 

  54. 54.

    Perilli S, Sfarra S, Guerrini M, Bisegna F, Ambrosini D. The thermophysical behaviour of cork supports doped with an innovative thermal insulation and protective coating: a numerical analysis based on in situ experimental data. Energy Build. 2018;159:508–28.

    Article  Google Scholar 

  55. 55.

    Shrestha R, Kim W. Modelling of pulse thermography for defect detection in aluminium structures: assessment on reflection and transmission measurement. World J Model Simul. 2017;13:45–51.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2019R1F1A1061328) funded by Ministry of Education, Science and Technology (MEST), Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Sfarra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Sfarra, S., Ridolfi, S. et al. A numerical–thermal–thermographic NDT evaluation of an ancient marquetry integrated with X-ray and XRF surveys. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-021-10571-2

Download citation

Keywords

  • Non-destructive inspection
  • Heat transfer
  • Numerical modelling
  • Infrared thermography
  • X-ray
  • Marquetry
  • Cultural heritage