Skip to main content
Log in

Thermal design, analysis, and testing of the first Turkish 3U communication CubeSat in low earth orbit

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

TURKSAT-3USAT is the first Turkish communication 3U CubeSat designed and built by the students of the Space Systems Design and Test Laboratory and Radio Frequency Electronics Laboratory of Istanbul Technical University (ITU). Students partnered with TURKSAT, A.S. Company as well as the Turkish Amateur Technology Organization, when creating the design. The payload of TURKSAT-3USAT, having dimensions of 10 × 10 × 34 cm3, is an amateur band VHF/UHF transponder that will be used for voice communication. In this study, a thermal control system of TURKSAT-3USAT at 680 km altitude was presented. TURKSAT-3USAT used both passive and active thermal control. The thermal model of CubeSat was constructed and analyzed using ThermXL and ESATAN-TMS thermal analysis tools. The temperature results showed that all electronic components were within their allowed temperature range, except the batteries. For batteries, heaters are recommended during the cold case condition. Thermal cycling and bake-out testing were carried out on the flight model in a thermal vacuum chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A p :

Projected area (m2)

C ji :

Conductive couplings (W K1)

C pi :

The specific heat (J kg1 K1)

dT/dt :

Temperature derivative with respect to time

F sat-earth :

View factor from the satellite to the Earth

f a :

Albedo factor

G :

Earth radiation flux (W m2)

M :

The mass of the node (kg)

R ji :

Radiative couplings (W K1)

Q :

Heat rate or heat input (W)

Q albedo :

Albedo radiation (W)

Q EarthIR :

Earth IR radiation (W)

Q i d :

Internal dissipation (W)

Q in :

Internal heat input (W)

Q out :

Outer heat input (W)

Q sun :

Solar radiation (W)

S :

Solar constant (W m2)

T :

Temperature (K or °C)

T i :

Temperature location; node; inner (K or °C)

T jr :

Temperature from node, body, or surface j to node, body, or surface r (K or °C)

T jk :

Temperature from node, body, or surface j to node, body, or surface k (K or °C)

t :

Time (s

αs :

Absorptance of external surfaces

ε:

Emittance of external surfaces

θ :

The angle of the satellite position with respect to the zenith

References

  1. Poghosyan A, Golkar A. CubeSat evolution: analyzing cubesat capabilities for conducting science missions. Prog Aerosp Sci. 2017;88:59–83. https://doi.org/10.1016/j.paerosci.2016.11.002.

    Article  Google Scholar 

  2. Willams AD, Palo SA, Korpela SA. Issues and implications of the thermal control systems on the ‘six day spacecraft’. In: Proceedings of 4th responsive space conference, Los Angeles, California, USA, Apr, 24–27; 2006

  3. Toorian A, Blundell E, Puig Suari, et al. Cubesats as responsive satellites. In: Proceedings of 3rd responsive space conference 2005, Los Angeles, CA, Apr, 25–28; 2005

  4. Dinh D. Thermal modeling of nanosat. San Jose State University, MSc. 2012.

  5. Puig-Suari J, Coelho R, Williams S, CubeSat design specification Rev.12, The CubeSat program, Cal.Poly SLO; 2009.

  6. CubeSat Design Specification, revision 13, www.cubesat.org/resources/. Accessed 30 May 2020.

  7. Selva D, Krejci D. A survey and assessment of the capabilities of cubesats for Earth observation. Acta Astronaut. 2009;70:50–68. https://doi.org/10.1016/j.actaastro.2011.12.014.

    Article  Google Scholar 

  8. Swartwout M. The first one hundred cubesats: a statistical look. J Small Satell. 2013;2(2):213–33.

    Google Scholar 

  9. Villela T, Costa CA, Brandao AM et al. Towards the thousandth Cubesat: a statistical overview. Int J Aerosp Eng 2019;5063145. https://doi.org/https://doi.org/10.1155/2019/5063145

  10. Millan RM, et al. Small satellites for space science: a COSPAR scientific roadmap. Adv Space Res. 2019;64:1466–517. https://doi.org/10.1016/j.asr.2019.07.035.

    Article  Google Scholar 

  11. Moffitt BA, Batty JC. Predictive thermal analysis of the combat sentinel satellite. In: 16th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, Aug, 12–15; 2002.

  12. Tsai JR. Overview of satellite thermal analytical model. J Spacecr Rockets. 2004;41(1):120–5. https://doi.org/10.2514/1.9273.

    Article  Google Scholar 

  13. Reiss P. New methodologies for the thermal modelling of cubesats. In: Proceedings of 26th annual AIAA/USU conference on small satellites, Logan, Utah, USA, Aug, 13–16; 2012.

  14. Escobar E, Diaz M, Zagal JC. Design automation for satellite passive thermal control. In: Proceedings of The 4S symposium, Portoroz, Slovenia, June, 04–08; 2012.

  15. Thanarasi K. Thermal analysis of cubesat in worse case hot and cold environment using FEA method. Appl Mech Mater. 2012;225:497–502. https://doi.org/10.4028/www.scientific.net/AMM.225.497.

    Article  Google Scholar 

  16. Bulut M, Kahriman A, Sozbir N. Design and analysis for the thermal control system of nanosatellite. In: Proceedings of ASME 2010 international mechanical congress and exposition, Vancouver, British Columbia, Canada, Nov, 14–18; 2010.

  17. Onetto R, Paas H, Perez H. Cube satellite design final report. Florida International University, EML design project. 2010.

  18. Bulut M, Sozbir N. Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations. Appl Therm Eng. 2015;75:1076–83. https://doi.org/10.1016/j.applthermaleng.2014.10.059.

    Article  Google Scholar 

  19. Brouwer GF, Ubbels WJ, Vaartjes AA et al. Assembly, integration, and testing of the Delfi-C3 nanosatellite, Space systems symposium Lessons learned in space systems. In: Proceedings of 59th international astronautical congress, Glasgow, Scotland, Sept 29- Oct3, Glasgow; 2008.

  20. Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: Real experiments for a cubesat mission. Appl Therm Eng. 2016;105:490–500. https://doi.org/10.1016/j.applthermaleng.2016.03.024.

    Article  Google Scholar 

  21. Corpino S, Caldera M, Masoero M, Nichele F, Viola N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut. 2015;115:247–61. https://doi.org/10.1016/j.actaastro.2015.05.012.

    Article  Google Scholar 

  22. Diaz-Aguado MF, Greenbaum J, Fowler WT et al. Small satellite thermal design, test, and analysis. In: Proceedings of SPIE 6221, modeling, simulation, and verification of space-based systems III, April, 17; 2006.

  23. Reyes LA, Cabriales-Gomez R, Chavez CE, et al. Thermal modeling of CIIISat nanosatellite: a tool for thermal barrier coating selection. Appl Therm Eng. 2020;166:114651. https://doi.org/10.1016/j.applthermaleng.2019.114651.

    Article  Google Scholar 

  24. Piedra S, Torres M, Ledesma S. Thermal numerical analysis of the primary composite structure of a CubeSat. Aerospace. 2019;6:97. https://doi.org/10.3390/aerospace6090097.

    Article  Google Scholar 

  25. Kang SJ, Oh HU. On-orbit thermal design and validation of 1 U standardized CubeSat of STEP cube lab. Int J Aerosp Eng 2016;4213189. https://doi.org/https://doi.org/10.1155/2016/4213189

  26. Kovács R, Józsa V. Thermal analysis of the SMOG-1 PocketQube satellite. Appl Therm Eng. 2018;139:506–13. https://doi.org/10.1016/j.applthermaleng.2018.05.020.

    Article  Google Scholar 

  27. Bauer J, Carter M, Kelley K et al. Mechanical, power, and thermal subsystem design for a cubesat mission. Worchester Polytechnic Institute, BSc. 2012

  28. Czernik S. Design of the thermal control system for compass-1. University of Applied Sciences Aachen, Germany, Diploma thesis, 2004.

  29. Moffitt BA. Predictive thermal analysis of the combat sentinel satellite test article. Utah State University, MSc. 2003.

  30. Smith KD. Environmental testing and thermal analysis of the NPS solar cell array tester (NPS-SCAT) cubesat. Naval Postgraduate School, MSc. 2011.

  31. Trinh GT. Environmental testing and orbital decay analysis for a cubesat. San Jose State University, MSc. 2013.

  32. Matsushita S et al. Thermal design and validation for a 6U CubeSat EQUULEUS under constraints tightly coupled with orbital design and water propulsion system. In: Proceedings of 49th international conference on environmental systems, Boston, Massachusetts, July, 7–11; 2019.

  33. Mauro S. Thermal analysis of Iodine Satellite (iSAT) from preliminary design review (PDR) to critical design review (CDR). In: Proceedings of 46th international conference on environmental systems, Vienna, Austria, July, 11–14; 2016.

  34. Hengeveld DW et al. Thermal design considerations for future high-power small satellites. In: Proceedings of 48th international conference on environmental systems, Albuquerque, New Mexico, USA July, 8–12; 2018.

  35. Garzon M. Development and analysis of the thermal design for the OSIRIS-3U CubeSat. The Pennsylvania State University, MSc. 2012.

  36. Chandrashekar S. Thermal analysis and control of MIST cubesat. KTH Royal Institute of Technology, Stockholm, MSc. 2017.

  37. Fernandes GF, Santos MB, V.D. Silva, et al. Thermal tests for cubesat in Brazil: lessons learned and the challenges for the future. In: Proceedings of 67th international sstronautical congress (IAC), Guadalajara, Mexico, Sept, 26–30; 2016.

  38. Fernandes GF, Stevenson Chisabas RS, Donizete O et al. Lessons learned analysis in thermal tests for CubeSats in Brazil. In: Proceedings of 47th international conference on environmental systems, Charleston, South Carolina, July, 16–20; 2017.

  39. Osdol TCV, Dorsey C, Hedlund J, et al. Design, fabrication, and analysis of a 3U cubesat platform. Santa Clara University, BSc. 2013.

  40. Paris C, Parisse M, Allawi WA. Thermovacuum tests on TIGRIsat structure. In: Proceedings of 2015 IEEE metrology for aerospace (MetroAeroSpace), Benevento, Italy, June, 4–5; 2015. p. 160––165.

  41. Claricoats J, Dakka SM. Design of power, propulsion, and thermal sub-systems for a 3U CubeSat measuring Earth’s radiation imbalance. Aerospace. 2018;5(2):63. https://doi.org/10.3390/aerospace5020063.

    Article  Google Scholar 

  42. Gorev V, Pelemeshko A, Zadorozhny A, et al. Thermal deformation of 3u cubesat in low earth orbit. MATEC Web of Conferences, EDP Sciences. 2018;158:01013. https://doi.org/10.1051/matecconf/201815801013.

    Article  CAS  Google Scholar 

  43. Gorev V, Pelemeshko A, Zadorozhny A et al. Time-saving method of orbital thermal regime calculations of nanosatellites as exemplified by a 3U CubeSat. In: Proceedings of MATEC web of conferences, EDP sciences. 2018;158:01012. https://doi.org/https://doi.org/10.1051/matecconf/201815801012

  44. Choi MK. Thermal assessment of paraffin phase change material mini-packs on IceCube 3U cubeSat in flight. In: Proceedings of 2018 AIAA propulsion and energy forum, Cincinnati, OH, Aug, 19–22; 2018.

  45. Jeon J, Lee S, Yoon S, et al. Construction of a thermal vacuum chamber for environment test of triple CubeSat mission TRIO-CINEMA. J Astron Space Sci. 2013;30(4):335–44. https://doi.org/10.5140/JASS.2013.30.4.335.

    Article  Google Scholar 

  46. Mason JP, Lamprecht B, Woods TN, et al. CubeSat on-orbit temperature comparison to thermal-balance-tuned-model predictions. J Thermophys Heat Transf. 2018;32(1):237–55. https://doi.org/10.2514/1.T5169.

    Article  CAS  Google Scholar 

  47. Chisabas RSS, Loureiro G, de Lino CO et al. Method for CubeSat thermal-vacuum cycling test specification. In: Proceedings of 47th international conference on environmental systems, Charleston (SC), USA, July, 16–20; 2017.

  48. Banerjee P. Satellite communication. Delhi: PHI Private Limited; 2017.

    Google Scholar 

  49. Blom E, Narverud E, Birkeland R. Technical satellite specification. Technical report, 2006.

  50. Gilmore DG. Spacecraft thermal control handbook volume I: Fundamental technologies. 2nd edn. El Segundo, CA: The Aerospace Press; 2002.

  51. Legatt M, Hauth D, and Hisamoto C. Thermal Analysis. University of Minnesota, April 2008.

  52. Spremo S, Bregman J, Dallara C, et al. Low cost rapid response space spacecraft (LCRRS), A research project in low cost spacecraft design and fabrication in a rapid prototyping environment. In: Proceedings of 22nd annual AIAA/USU conference on small satellites, Logan, Utah, Aug, 11–14; 2008.

  53. Le Van BL. Integrated thermal design of OUFTI-Next CubeSat. University of Liege, Liege, Belgium, MSc. 2019.

  54. Bulut M, Gulgonul S, Sozbir N. Thermal control design of TUSAT. In: Proceedings of 6th International energy conversion engineering conference, AIAA, Cleveland, Ohio, USA, July, 28–30; 2008.

  55. Sozbir N, Bulut M. Thermal control of CM and SM panels for Turkish satellite. In: Proceedings of SAE 39th international conference on environmental systems, Savannah, Georgia, USA, July, 12–16; 2009.

  56. Bulut M. Thermal simulation software based on excel for spacecraft applications. Selcuk Univ J Eng Sci Technol 2018;6(4):592–600. http://hdl.handle.net/123456789/14100

  57. Bulut M, Sozbir N. Thermal design of a geostationary orbit communications satellite. Electron World. 1964;2016(122):28–32.

    Google Scholar 

  58. Bulut M, Sozbir N. Heat rejection capability for geostationary satellites. 9. Ankara international aerospace conference, Ankara, Turkey, Sept. 20–22; 2017.

  59. Meseguer J, Perez-Grande I, Sanz-Andres A. Spacecraft thermal control. Cambridge: Woodhead Publishing in Mechanical Engineering; 2012.

    Book  Google Scholar 

  60. Pisacane LV. Fundamentals of space systems. 2nd ed. New York: Oxford University Press; 2005.

    Google Scholar 

  61. Gebhart B. Surface temperature calculations in radiant surroundings of arbitrary complexity—for gray, diffuse radiation. Int J Heat Mass Transf. 1961;3:341–6. https://doi.org/10.1016/0017-9310(61)90048-5.

    Article  Google Scholar 

  62. Aslan AR, Sofyali A, Umit, E, Tola C, Oz I, Gulgonul S. TURKSAT-3USAT: A 3U communication CubeSat with passive magnetic stabilization. In: Proceedings of recent advances in space technologies (RAST), 2011 5th International Conference, Istanbul, Turkey, June, 09–11; 2011. pp. 783–788.

  63. Kellens A. Thermal design of the OUFTI-Next mission. MA: University of Liege; 2018.

    Google Scholar 

  64. Le Van A. Integrated Thermal design of the OUFTI-Next CubeSat. MA: University of Liege; 2019.

    Google Scholar 

  65. Carvalho RA, Estela J, Langer M. Nanosatellites space and ground technologies, operations and economics. 1st ed. Glasgow: Bell & Bain Ltd; 2020.

    Book  Google Scholar 

  66. Bratcher JR. Testing program for KYSAT-1. University of Kentucky, MSc. 2010.

  67. Bowen J, Villa M, Williams A. Cubesat based rendezvous, proximity operations, and docking in the CPOD mission. In: Proceedings of 29th Annual AIAA/USU conference on small satellites, Logan, UT, USA, Aug, 8–13; 2015.

  68. Ömür, C, Uygur AB. Development of a thermal mathematical model for the simulation of transient behavior of a spaceborne equipment in vacuum environment. J Therm Sci Technol 2105;35:2:37–44

  69. Ampatzoglou A, Kostopoulos V. Design, analysis, optimization, manufacturing, and testing of a 2U cubesat. Hindawi Int J Aerosp Eng. 2018, Article ID 9724263 (2018). https://doi.org/https://doi.org/10.1155/2018/9724263

  70. Süer M. TURKSAT 3USAT Isıl tasarım raporu. Istanbul, Turkey: ITU; 2011. ((in Turkish)).

    Google Scholar 

Download references

Acknowledgements

The author thanks to Sheila Christopher-Gokkaya for revising the whole manuscript.

Funding

The project is fully supported by TURKSAT, A.S. in Ankara, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bulut.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, M. Thermal design, analysis, and testing of the first Turkish 3U communication CubeSat in low earth orbit. J Therm Anal Calorim 143, 4341–4353 (2021). https://doi.org/10.1007/s10973-021-10566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10566-z

Keywords

Navigation