Skip to main content
Log in

Thermodynamic analysis of entropy generation due to energy transfer through circular surfaces under pool boiling condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pool boiling is a well-known heat transfer mechanism which is accomplished by submerging a heating surface in a pool of stationary liquid. The role and share of different energy transfer mechanisms in pool boiling can be determined through entropy generation analysis. In this paper, entropy generation due to energy transfer through circular surfaces is analyzed and the optimized thermodynamic system is achieved. Furthermore, two models of total heat flux (linear and nonlinear) are developed for pool boiling heat transfer in which the effect of different parameters such as nucleation site density, contact angle, Prandtl number (Pr) as well as surface diameter are considered. The obtained results reveal the enhanced heat flux and entropy generation as the consequences of increased wall superheat temperature, contact angle, Prandtl number and surface diameter. The developed model is validated by comparing the obtained results with respective experimental data and semi-analytical results. In addition, results exhibit that the maximum entropy generation is observed at \(\Delta T = 15 \,{\text{K}}\) and \(Pr = 3.5\) which was equal to 4.06 W m−1 K−1 and 3.78 W m−1 K−1 for Model 1 and Model 2, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Surface area \(\left( {{\text{m}}^{2}} \right)\)

Ar :

Archimedes number

B :

Specific liquid constant

\(C_{{\text{P}}}\) :

Specific heat capacity \(\left( {{{\text{J}}}\,{{{\text{kg}}^{-1}\,{\text{K}}^{-1}}}} \right)\)

D :

Diameter (m)

f :

Bubble departure frequency \(\left( {{{\text{s}}^{-1}}} \right)\)

F :

Force \(\left( {\text{N}} \right)\)

g :

Gravity acceleration \(\left( {{{\text{m}}}\,{{{\text{s}}^{-2}}}} \right)\)

h :

Specific enthalpy \(\left( {{{\text{J}}}\,{{{\text{kg}}^{-1}}}} \right)\)

H :

Heat transfer coefficient \( \left( {{{\text{W}}}\,{{{\text{m}}^{-2} \,{\text{K}}^{-1}}}} \right) \)

Ja :

Jacob number

k :

Thermal conductivity \( \left( {{{\text{W}}}\,{{{\text{m}}^{-1} \,{\text{K}}^{-1}}}} \right) \)

\(\dot{m}\) :

Mass flow rate

\(N_{{\text{a}}}\) :

Active nucleation site density \(\left( {\frac{{{\text{site}}}}{{{\text{m}}^{{\text{2}}}}}} \right)\)

P :

Pressure \(\left( {{\text{Pa}}} \right)\)

Pr :

Prandtl number

q :

Heat flux \(\left( {{{\text{W}}}\,{{{\text{m}}^{{\text{-2}}}}}} \right)\)

\(\dot{Q}\) :

Heat transfer rate \(\left( {\text{W}} \right)\)

\(R_{{\text{a}}}\) :

Roughness \(\left( {\text{m}} \right)\)

s :

Entropy \(\left( {{{\text{J}}}\,{{\text{K}}^{-1}}} \right)\)

\(\dot{S}\) :

Rate of entropy per unit length \( \left( {{{\text{W}}}\,{{{\text{m}}^{-1} \,{\text{K}}^{-1}}}} \right) \)

T :

Temperature \(\left( {\text{K}} \right)\)

\(T_{{\text{w}}}\) :

Wall temperature \(\left( {\text{K}} \right)\)

t :

Time (s)

x :

Vapor quality

α :

Thermal diffusivity \(\left( {\frac{{{\text{m}}^{2}}}{{\text{s}}}} \right)\)

γ :

Influence of heating surface material

δ :

Thickness of micro layer (m)

\(\theta\) :

Contact angle

μ :

Dynamic viscosity \(\left( {{\text{Pa}}\,{\text{s}}} \right)\)

\(\nu\) :

Momentum diffusivity \(\left( {{{{\text{m}}^{2}}}\,{{\text{s}}^{-1}}} \right)\)

ρ :

Density \(\left( {{{{\text{kg}}}}\,{{{\text{m}}^{-3}}}} \right)\)

σ :

Surface tension \(\left( {{{\text{N}}}\,{{\text{m}}^{-1}}} \right)\)

\(\Gamma\) :

Perimeter (m)

\({\text{bub}}\) :

Bubble

\({\text{d}}\) :

Dry

\({\text{g}}\) :

Growth

\({\text{gen}}\) :

Generation

\({\text{l}}\) :

Liquid

\({\text{me}}\) :

Micro-layer evaporation

\({\text{nc}}\) :

Natural convection

\({\text{r}}\) :

Reformation

\({\text{tot}}\) :

Total

\({\text{v}}\) :

Vapor

\({\text{w}}\) :

Waiting

CHF:

Critical heat flux

HTC:

Heat transfer coefficient

MHF:

Minimum heat flux

NSD:

Nucleation site density

ONB:

Onset of nucleate boiling

References

  1. Kim DE, Yu DI, Jerng DW, Kim MH, Ahn HS. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Thermal Fluid Sci. 2015;66:173–96.

    CAS  Google Scholar 

  2. Yu B, Cheng P. A fractal model for nucleate pool boiling heat transfer. Heat Transf. 2002;124(6):1117–24.

    CAS  Google Scholar 

  3. Nukiyama S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf. 1966;9(12):1419–33.

    Google Scholar 

  4. Liang G, Mudawar I. Review of spray cooling—part 2: high temperature boiling regimes and quenching applications. Int J Heat Mass Transf. 2017;115:1206–22.

    CAS  Google Scholar 

  5. Liang G, Mudawar I. Review of spray cooling—part 1: single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transf. 2017;115:1174–205.

    CAS  Google Scholar 

  6. Saffari H, Moghadasi H, Malekian N, Hosseinalipour SM (2019) Modeling heat transfer in nucleate pool boiling: influence of nucleation sites density, contact angle and Prandtl number. In: The third international conference on innovation and research in engineering sciences. Tbilisi, Georgia

  7. Saffari H, Fathalizadeh H, Moghadasi H, Alipour S, Hosseinalipour SM. Experimental study of pool boiling enhancement for surface structuring with inclined intersected mesochannels using WEDM method on copper surfaces. Therm Anal Calorim. 2020;139:1849–61.

    CAS  Google Scholar 

  8. Liang G, Mudawar I. Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf. 2019;128:892–933.

    Google Scholar 

  9. Deng D, Wan W, Feng J, Huang Q, Qin Y, Xie Y. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels. Appl Therm Eng. 2016;107:420–30.

    CAS  Google Scholar 

  10. Moghadasi H, Saffari H, Malekian N. Experimental and semi-analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods. Exp Heat Transf 2020;1–21. https://doi.org/10.1080/08916152.2020.1743385.

  11. Moghadasi H, Saffari H. Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces. Int J Mech Sci. 2021;196:106270.

  12. Moghadasi H, Malekian N, Saffari H, Mirza Gheitaghy A, Zhang GQ. Recent advances in the critical heat flux amelioration of pool boiling surfaces using metal oxide nanoparticle deposition. Energies. 2020;13(15):4026.

    CAS  Google Scholar 

  13. Mehdikhani A, Moghadasi H, Saffari H. An experimental investigation of pool boiling augmentation using four-step electrodeposited micro/nanostructured porous surface in distilled water. Int J Mech Sci. 2020;187:105924.

    Google Scholar 

  14. Mukherjee S, Mishra PC, Chaudhuri P. Pool boiling performance of aqueous Al2O3 and TiO2 nanofluids on a horizontally placed flat polished surface: an experimental investigation. J Therm Anal Calorim 2020;1–19. https://doi.org/10.1007/s10973-020-09995-z.

  15. Kamel MS, Al-agha MS, Lezsovits F, Mahian O. Simulation of pool boiling of nanofluids by using Eulerian multiphase model. J Therm Anal Calorim.2019;142:1–13.

  16. Gajghate SS, Barathula S, Das S, Saha BB, Bhaumik S. Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface. J Therm Anal Calorim. 2019;140:1393–411.

    Google Scholar 

  17. Safaei MR, Tlili I, Gholamalizadeh E, Abbas T, Alkanhal TA, Goodarzi M, Dahari M. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09911-5.

    Article  Google Scholar 

  18. Chi-Yeh H, Griffith P. The mechanism of heat transfer in nucleate pool boiling—part I: bubble initiaton, growth and departure. Int J Heat Mass Transf. 1965;8(6):887–904.

    Google Scholar 

  19. Judd R, Hwang K. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. Heat Transf. 1976;98(4):623–9.

    CAS  Google Scholar 

  20. Paul D, Abdel-Khalik S. A statistical analysis of saturated nucleate boiling along a heated wire. Int J Heat Mass Transf. 1983;26(4):509–19.

    Google Scholar 

  21. Li Y-Y, Liu Z-H, Wang G-S. A predictive model of nucleate pool boiling on heated hydrophilic surfaces. Int J Heat Mass Transf. 2013;65:789–97.

    Google Scholar 

  22. Benjamin R, Balakrishnan A. Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. Int J Heat Mass Transf. 1996;39(12):2495–504.

    CAS  Google Scholar 

  23. Hibiki T, Ishii M. Active nucleation site density in boiling systems. Int J Heat Mass Transf. 2003;46(14):2587–601.

    CAS  Google Scholar 

  24. Serret D, Guignard S, Tadrist L. Nucleate boiling on a single site: contact angle analysis for a quasi-2D growing vapour bubble. Microgr Sci Technol. 2009;21(1–2):101–5.

    CAS  Google Scholar 

  25. Chung HJ, No HC. A nucleate boiling limitation model for the prediction of pool boiling CHF. Int J Heat Mass Transf. 2007;50(15–16):2944–51.

    Google Scholar 

  26. Chen L, Meng F, Sun F. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Technol Sci. 2016;59(3):442–55.

    Google Scholar 

  27. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non Equilib Thermodyn. 1999;24(4):327–59.

    CAS  Google Scholar 

  28. Ghanbarpour M, Khodabandeh R. Entropy generation analysis of cylindrical heat pipe using nanofluid. Thermochim Acta. 2015;610:37–46.

    CAS  Google Scholar 

  29. Orhan MF, Erek A, Dincer I. Entropy generation during a phase-change process in a parallel plate channel. Thermochim Acta. 2009;489(1–2):70–4.

    CAS  Google Scholar 

  30. Popovic M. Comparative study of entropy and information change in closed and open thermodynamic systems. Thermochim Acta. 2014;598:77–81.

    CAS  Google Scholar 

  31. Abdous MA, Saffari H, Avval HB, Khoshzat M. The study of entropy generation during flow boiling in a micro-fin tube. Int J Refrig. 2016;68:76–93.

    Google Scholar 

  32. Holagh SG, Abdous MA, Shamsaiee M, Saffari H. Assessment of heat transfer enhancement technique in flow boiling conditions based on entropy generation analysis: twisted-tape tube. Heat Mass Transf. 2020;56(2):429–43.

    CAS  Google Scholar 

  33. Awad MM. A review of entropy generation in microchannels. Adv Mech Eng. 2015;7(12):1687814015590297.

    Google Scholar 

  34. Manjunath K, Kaushik S. Second law efficiency analysis of heat exchangers. Heat Transf Asian Res. 2015;44(2):89–108.

    Google Scholar 

  35. Manjunath K, Kaushik S. Second law thermodynamic study of heat exchangers: a review. Renew Sustain Energy Rev. 2014;40:348–74.

    CAS  Google Scholar 

  36. Ahmad S, Nadeem S, Ullah N. Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl Nanosci. 2020;10:5107–119.

    CAS  Google Scholar 

  37. Ahmad S, Nadeem S. Cattaneo–Christov-based study of SWCNT–MWCNT/EG Casson hybrid nanofluid flow past a lubricated surface with entropy generation. Appl Nanosci. 2020;10:5449–458.

  38. Aminian E, Moghadasi H, Saffari H, Gheitaghy AM. Investigation of forced convection enhancement and entropy generation of nanofluid flow through a corrugated minichannel filled with a porous media. Entropy. 2020;22(9):1008.

    CAS  PubMed Central  Google Scholar 

  39. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Google Scholar 

  40. Darbari B, Rashidi S, Keshmiri A. Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. J Therm Anal Calorim. 2019;140:1045–55.

    Google Scholar 

  41. Shi E, Zang X, Jiang C, Mohammadpourfard M. Entropy generation analysis for thermomagnetic convection of paramagnetic fluid inside a porous enclosure in the presence of magnetic quadrupole field. J Therm Anal Calorim. 2020;139(3):2005–22.

    CAS  Google Scholar 

  42. Bibi F, Hayat T, Farooq S, Khan A, Alsaedi A. Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity. J Therm Anal Calorim. 2019;143:363–75.

    Google Scholar 

  43. Bejan A, Pfister PA Jr. Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Lett Heat Mass Transf. 1980;7(2):97–106.

    CAS  Google Scholar 

  44. Vargas J, Bejan A. Thermodynamic optimization of the match between two streams with phase change. Energy. 2000;25(1):15–33.

    Google Scholar 

  45. Dağtekin İ, Öztop HF, Şahin AZ. An analysis of entropy generation through a circular duct with different shaped longitudinal fins for laminar flow. Int J Heat Mass Transf. 2005;48(1):171–81.

    Google Scholar 

  46. Sahiti N, Krasniqi F, Fejzullahu X, Bunjaku J, Muriqi A. Entropy generation minimization of a double-pipe pin fin heat exchanger. Appl Therm Eng. 2008;28(17–18):2337–44.

    CAS  Google Scholar 

  47. Khairul MA, Saidur R, Rahman MM, Alim MA, Hossain A, Abdin Z. Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int J Heat Mass Transf. 2013;67:398–403.

    CAS  Google Scholar 

  48. Bianco V, Manca O, Nardini S. Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux. Energy Convers Manag. 2014;77:306–14.

    CAS  Google Scholar 

  49. Zehtabiyan-Rezaie N, Saffar-Avval M, Mirzaei M. Analytical and numerical investigation of heat transfer and entropy generation of stratified two-phase flow in mini-channel. Int J Therm Sci. 2015;90:24–37.

    Google Scholar 

  50. Wang C, Dhir V. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Heat Transf. 1993;115(3):659–69.

    CAS  Google Scholar 

  51. Xiao B, Yu B. A fractal model for critical heat flux in pool boiling. Int J Therm Sci. 2007;46(5):426–33.

    Google Scholar 

  52. Xiao B. A new analytical model for heat transfer in pool boiling. Mod Phys Lett B. 2010;24(12):1229–36.

    CAS  Google Scholar 

  53. Mohanty RL, Das MK. A critical review on bubble dynamics parameters influencing boiling heat transfer. Renew Sustain Energy Rev. 2017;78:466–94.

    CAS  Google Scholar 

  54. Khan MR, Pan K, Khan AU, Nadeem S. Dual solutions for mixed convection flow of SiO2–Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Phys A Stat Mech Appl. 2020;547:123959.

    CAS  Google Scholar 

  55. Moghadasi H, Aminian E, Saffari H, Mahjoorghani M, Emamifar A. Numerical analysis on laminar forced convection improvement of hybrid nanofluid within a U-Bend pipe in porous media. Int J Mech Sci. 2020;179.

  56. Aminian E, Moghadasi H, Saffari H. Magnetic field effects on forced convection flow of a hybrid nanofluid in a cylinder filled with porous media: a numerical study. J Therm Anal Calorim. 2020;141:1–13.

    Google Scholar 

  57. Malekian S, Fathi E, Malekian N, Moghadasi H, Moghimi M. Analytical and numerical investigations of unsteady graphene oxide nanofluid flow between two parallel plates. Int J Thermophys. 2018;39(9):100.

    Google Scholar 

  58. Ahmadi AA, Khodabandeh E, Moghadasi H, Malekian N, Akbari OA, Bahiraei M. Numerical study of flow and heat transfer of water–Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian–Lagrangian approach. J Therm Anal Calorim. 2018;132(1):651–65.

    CAS  Google Scholar 

  59. Ahmad S, Nadeem S. Analysis of activation energy and its impact on hybrid nanofluid in the presence of hall and ion slip currents. Appl Nanosci. 2020;10:5315–30.

    CAS  Google Scholar 

  60. Ahmad S, Nadeem S. Application of CNT-based micropolar hybrid nanofluid flow in the presence of Newtonian heating. Appl Nanosci. 2020;10:5265–277.

    CAS  Google Scholar 

  61. Muhammad N, Nadeem S, Issakhov A. Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid flow in a cavity having thin central heater. Phys A. 2020;537:122738.

    CAS  Google Scholar 

  62. Van Stralen S, Sohal M, Cole R, Sluyter W. Bubble growth rates in pure and binary systems: combined effect of relaxation and evaporation microlayers. Int J Heat Mass Transf. 1975;18(3):453–67.

    Google Scholar 

  63. Sernas V, Hooper F. The initial vapor bubble growth on a heated wall during nucleate boiling. Int J Heat Mass Transf. 1969;12(12):1627–39.

    CAS  Google Scholar 

  64. Del Valle VH, Kenning D. Subcooled flow boiling at high heat flux. Int J Heat Mass Transf. 1985;28(10):1907–20.

    Google Scholar 

  65. Dhir V. Nucleate and transition boiling heat transfer under pool and external flow conditions. Int J Heat Fluid Flow. 1991;12(4):290–314.

    CAS  Google Scholar 

  66. Mikic B, Rohsenow W. A new correlation of pool-boiling data including the effect of heating surface characteristics. Heat Transf. 1969;91(2):245–50.

    CAS  Google Scholar 

  67. Arshadi SS, Saffari H, Gheitaghi A. Analytical and experimental investigation of nucleate pool boiling heat transfer on copper hydrophilic surfaces. Iran J Mech Eng. 2015;1240:012093.

    Google Scholar 

  68. Hsu C-C, Chen P-H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int J Heat Mass Transf. 2012;55:3713–719.

    CAS  Google Scholar 

  69. Phan HT, Caney N, Marty P, Colasson S, Gavillet J. How does surface wettability influence nucleate boiling? Comptes Rendus Mécanique. 2009;337(5):251–9.

    CAS  Google Scholar 

  70. Coulson JM, Richardson JF, Backhurst JR, Harker JH. Chemical engineering: fluid flow, heat transfer and mass transfer, vol. 1. Oxford: Butterworth-Heinemann; 1999.

    Google Scholar 

  71. Cengel YA, Klein S, Beckman W. Heat transfer: a practical approach, vol. 141. New York: McGraw-Hill; 1998.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Saffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadasi, H., Malekian, N., Aminian, E. et al. Thermodynamic analysis of entropy generation due to energy transfer through circular surfaces under pool boiling condition. J Therm Anal Calorim 147, 2495–2508 (2022). https://doi.org/10.1007/s10973-021-10561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10561-4

Keywords

Navigation