Skip to main content
Log in

Thermo-economic optimization of a hybrid photovoltaic and thermoelectric power generator using overall performance index

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermo-economic assessment of a hybrid concentrated photovoltaic–thermoelectric power generator (CPV–TEG) is performed based on the first law of thermodynamics and principles of costing. This study aims at estimating the optimum water-cooled CPV–TEG design parameters that yield the maximum overall performance. The influence of key parameters (such as direct normal irradiance (DNI), geometric concentration, thermoelectric figure of merit, temperature ratio of thermoelectric junction and heat sink thermal resistance) and their significance on the performance and cost of the system is examined. A performance measure known as the overall performance index (OPI) is used to evaluate the optimum design of the CPV–TEG system operating within the limits of allowable cell temperatures. OPI can incorporate several performance indicators that are crucial for performance estimation of a hybrid system by using a mass coefficient for each indicator based on its priority in the overall system performance. OPI accounts for three performance indicators of the CPV–TEG system, namely: energy efficiency, cost of the solar receiver (COSR) and levelized cost of energy (LCOE). The variation of the OPI provides an indication of the performance of the hybrid system under different design parameters and the selection of the appropriate design of the system to be at a point where the OPI is a maximum. Two scenarios are considered such that different mass coefficients are assigned to the performance indicators when evaluating the system performance. In the first scenario (performance case), energy efficiency is given the highest priority while for the second scenario (economic case), the cost of the solar receiver (CPV–TEG system) is given more emphasis. Optimization is performed for the water-cooled CPV–TEG design such that the PV temperature is kept below the maximum allowable cell temperature of 100 °C. LCOE of 0.0392 $ kWh−1 was obtained with an optimum OPI of 94.7% for the economic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fisac M, Villasevil FX, López AM. High-efficiency photovoltaic technology including thermoelectric generation. J Power Sources. 2014;252:264–9.

    CAS  Google Scholar 

  2. Li G, Shittu S, Diallo TMO, Yu M, Zhao X, Ji J. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation. Energy. 2018;158:41–58.

    Google Scholar 

  3. Diallo TMO, Yu M, Zhou J, Zhao X, Shittu S, Li G, Jie J, Hardy D. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy. 2019;167:866–88.

    Google Scholar 

  4. Wiesenfarth M, Philipps SP, Bett AW, Horowitz K, Kurtz S. Current Status of Concentrator Photovoltaic (CPV) Technology. Report. US Department of Energy: National Renewable Energy Laboratory NREL; 2017.

    Google Scholar 

  5. Pérez-Higueras P, Ferrer-Rodríguez JP, Almonacid F, Fernández EF. Efficiency and acceptance angle of High Concentrator Photovoltaic modules: current status and indoor measurements. Renew Sustain Energy Rev. 2018;94:143–53.

    Google Scholar 

  6. Talavera DL, Ferrer-Rodríguez JP, Pérez-Higueras P, Terrados J, Fernández EF. A worldwide assessment of levelised cost of electricity of HCPV systems. Energy Convers Manag. 2016;127:679–92.

    Google Scholar 

  7. Ekins-Daukes NJ, Sandwell P, Nelson J, Johnson AD, Duggan G, Herniak E. What does CPV need to achieve in order to succeed? AIP Conf Proc. 2016;1766:020004.

    Google Scholar 

  8. Shittu S, Li G, Akhlaghi YG, Ma X, Zhao X, Ayodele E. Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renew Sustain Energy Rev. 2019;109:24–54.

    Google Scholar 

  9. He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Appl Energy. 2015;143:1–25.

    Google Scholar 

  10. Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci. 2012;5:5147–62.

    Google Scholar 

  11. Vaqueiro P, Powell AV. Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem. 2010;20:9577–84.

    CAS  Google Scholar 

  12. Guo XZ, Zhang YD, Qin D, Luo YH, Li DM, Pang YT, Meng QB. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. J Power Sources. 2010;195:7684–90.

    CAS  Google Scholar 

  13. Miljkovic N, Wang EN. Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Sol Energy. 2011;85:2843–55.

    Google Scholar 

  14. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS, Karimipour A. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09998-w

    Article  Google Scholar 

  15. Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A. A review on the performance of photovoltaic/thermoelectric hybrid generators. Int J Energy Res. 2020;44:3365–94.

    Google Scholar 

  16. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Solar cell efficiency tables (Version 53). Prog Photovolt. 2019;27:3–12.

    Google Scholar 

  17. Li J, Mohammadi A, Maleki A. Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle, and parabolic trough collector. J Therm Anal Calorim. 2020;139:2691–703.

    CAS  Google Scholar 

  18. Maleki A, Ngo PTT, Shahrestani MI. Energy and exergy analysis of a PV module cooled by an active cooling approach. J Therm Anal Calorim. 2020;141:2475–85.

    CAS  Google Scholar 

  19. Tamaki R, Toyoda T, Tamura Y, Matoba A, Minamikawa T, Tokuda M, Masul M, Okada Y. Hybrid photovoltaic and thermoelectric module for high concentration solar system. AIP Conf Proc. 2017;1881:100002.

    Google Scholar 

  20. Kil TH, Kim S, Jeong DH. A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator. Nano Energy. 2017;37:242–7.

    CAS  Google Scholar 

  21. Rezania A, Rosendahl LA. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Appl Energy. 2017;187:380–9.

    Google Scholar 

  22. Zhang J, Xuan Y. Performance improvement of a photovoltaic—Thermoelectric hybrid system subjecting to fluctuant solar radiation. Renew Energy. 2017;113:1551–8.

    CAS  Google Scholar 

  23. Lamba R, Kaushik SC. Modeling and performance analysis of a concentrated photovoltaic – thermoelectric hybrid power generation system. Energy Convers Manag. 2016;115:288–98.

    Google Scholar 

  24. Cui T, Xuan Y, Li Q. Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials. Energy Convers Manag. 2016;112:49–60.

    CAS  Google Scholar 

  25. Sohn YS. Optimization of photovoltaic-thermoelectric device for increment of conversion efficiency of solar energy. J Nanoelectr Optoelectr. 2012;5:430–3.

    Google Scholar 

  26. Vorobiev YV, González-Hernández J, Kribus A. Analysis of potential conversion efficiency of a solar hybrid system with high-temperature stage. J Sol Energy Eng Trans ASME. 2006;128:258–60.

    CAS  Google Scholar 

  27. Kwan TH, Wu X. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Appl Energy. 2016;165:297–307.

    Google Scholar 

  28. Li G, Chen X, Jin Y, Li G, Chen X, Jin Y. Analysis of the primary constraint conditions of an efficient photovoltaic-thermoelectric hybrid system. Energies. 2016;10:20.

    Google Scholar 

  29. Hashim H, Bomphrey JJ, Min G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renew Energy. 2016;87:458–63.

    Google Scholar 

  30. Yin E, Li Q, Xuan Y. Optimal design method for concentrating photovoltaic-thermoelectric hybrid system. Appl Energy. 2018;226:320–9.

    Google Scholar 

  31. Rodrigo PM, Valera A, Fernández EF, Almonacid FM. Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules. Appl Energy. 2019;238:1150–62.

    Google Scholar 

  32. Rodrigo PM, Valera A, Fernandez EF, Almonacid FM. Annual Energy Harvesting of Passively Cooled Hybrid Thermoelectric Generator-Concentrator Photovoltaic Modules. IEEE J Photovolt. 2019;9:1652–60.

    Google Scholar 

  33. Al-Sharafi A, Sahin AZ, Yilbas BS. Overall performance index for hybrid power plants. Energy Convers Manag. 2015;100:103–16.

    Google Scholar 

  34. CPV Solar Cells—AZUR SPACE Solar Power GmbH [Online] Available: http://www.azurspacecom/indexphp/en/products/products-cpv/cpv-solar-cells [Accessed: 22-Dec-2019].

  35. Royne A, Dey CJ, Mills DR. Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells. 2005;86:451–83.

    CAS  Google Scholar 

  36. Cotal H, Frost J. Heat transfer modeling of concentrator multijunction solar cell assemblies using finite difference techniques. In: 2010 35th IEEE Photovoltaic Specialists Conference Proceedings. 2010;000213–000218.

  37. Micheli L, Fernández EF, Almonacid F, Mallick TK, Smestad GP. Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics. Sol Energy Mater Sol Cells. 2016;153:164–78.

    CAS  Google Scholar 

  38. Rodrigo P, Micheli L, Almonacid F. The high-concentrator photovoltaic module. High Concentrator Photovoltaics. 2015:115-151.

  39. Notton G, Cristofari C, Mattei M, Poggi P. Modelling of a double-glass photovoltaic module using finite differences. Appl Therm Eng. 2005;25:2854–77.

    CAS  Google Scholar 

  40. Chiu P, Wojtczuk S, Harris C, Pulver D. Temperature dependence of InGaP/GaAs/InGaAs concentrators using bifacial epigrowth. Conf Rec IEEE Photovolt Spec Conf. 2011;111:002523–6.

    Google Scholar 

  41. Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. New York: Wiley; 2013.

    Google Scholar 

  42. Nowak H. The sky temperature in net radiant heat loss calculations from low-sloped roofs. Infrared Phys. 1989;29:231–2.

    Google Scholar 

  43. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. New York: Wiley; 2007.

    Google Scholar 

  44. Askins S, Domínguez C, Antón I, Sala G. Indoor performance rating of CPV modules at multiple temperatures and irradiance levels. AIP Conf Proc. 2010;1277:209.

    Google Scholar 

  45. Soria-Moya A, Almonacid-Cruz F, Fernandez EF, Rodrigo P, Mallick TK, Perez-Higueras P. Performance analysis of models for calculating the maximum power of high concentrator photovoltaic modules. IEEE J Photovolt. 2015;5:947–55.

    Google Scholar 

  46. Fernández EF, Almonacid F, Rodrigo P, Pérez-Higueras P. Model for the prediction of the maximum power of a high concentrator photovoltaic module. Sol Energy. 2013;97:12–8.

    Google Scholar 

  47. Xiao M, Tang L, Zhang X, Lun IYF, Yuan Y. A review on recent development of cooling technologies for concentrated photovoltaics (CPV) systems. Energies. 2018;11:12.

    Google Scholar 

  48. Venkatasubramanian R, Siivola E, Colpitts T, Quinn BO. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597–602.

    PubMed  CAS  Google Scholar 

  49. Pérez-Higueras P, Fernández EF. High concentrator photovoltaics: fundamentals. engineering and power plants. Berlin: Springer; 2015.

    Google Scholar 

  50. Barbose G, Darghouth N, Weaver S. Tracking the Sun VII: an historical summary of the installed price of photovoltaics in the United States from 1998 to 2013. Lawrence Berkeley Natl Lab: Environ Energy Technol Div; 2014.

    Google Scholar 

  51. Poullikkas A, Hadjipaschalis I, Kourtis G. Parametric assessment of concentrated photovoltaic parks for the Mediterranean region. Int J Sustain Energy. 2011;32:1–11.

    Google Scholar 

  52. Swift KD. A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States. Renew Energy. 2013;57:137–43.

    Google Scholar 

  53. Bazilian M. Re-considering the economics of photovoltaic power. Renew Energy. 2013;53:329–38.

    Google Scholar 

  54. Yazawa K, Shakouri A. Material optimization for concentrated solar photovoltaic and thermal co-generation. ASME 2011 Pacific Rim Tech Conf Exhib Packag Integr Electron Photonic Syst InterPACK 2011. 2011;1:733–739.

  55. EES: Engineering Equation Solver | F-Chart Software : Engineering Software [Online] Available: https://www.fchartsoftwarecom/ees/ [Accessed: 23-Jun-2020].

  56. Fernández EF, Almonacid F, Rodrigo P, Pérez-Higueras P. Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mater Sol Cells. 2014;121:144–51.

    Google Scholar 

  57. Hajabdollahi Z, Hajabdollahi H, Kim KC. Multi-objective optimization of solar collector using water-based nanofluids with different types of nanoparticles. J Therm Anal Calorim. 2020;140:991–1002.

    CAS  Google Scholar 

  58. Hajabdollahi Z, Hajabdollahi H, Kim KC. Heat transfer enhancement and optimization of a tube fitted with twisted tape in a fin-and-tube heat exchanger. J Therm Anal Calorim. 2020;140:1015–27.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia for this work under Research Grant RG171001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Z. Sahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaila, K.G., Sahin, A.Z., Yilbas, B.S. et al. Thermo-economic optimization of a hybrid photovoltaic and thermoelectric power generator using overall performance index. J Therm Anal Calorim 144, 1815–1829 (2021). https://doi.org/10.1007/s10973-021-10547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10547-2

Keywords

Navigation