Skip to main content

Thermal characterization and stability evaluation of leishmanicidal selenocyanate and diselenide derivatives

Abstract

In this study, the thermal behavior of a series of leishmanicidal selenocyanate and diselenide biological active compounds has been studied by means of differential scanning calorimetry, X-ray diffraction and thermogravimetry in order to establish thermal stability criteria and investigate their polymorphism. Moreover, stability under acid, alkaline and oxidative media was tested using high-performance liquid chromatography with fluorescence detection. The results of the experiments show that there are five types of polymorphic behaviors for the studied compounds. In addition, relationship is found among stability and a series of structural effects and stress conditions of compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng. 2011;2:259–80.

    CAS  PubMed  Google Scholar 

  2. Giron D. Applications of thermal analysis in the pharmaceutical industry. J Pharm Biomed Anal. 1986;4:755–70.

    CAS  PubMed  Google Scholar 

  3. Khan W, Kumar N. Characterization, thermal stability studies, and analytical method development of paromomycin for formulation development. Drug Test Anal. 2011;3:363–72.

    CAS  PubMed  Google Scholar 

  4. Yoshida MI, Gomes ECL, Soares CDV, Cunha AF, Oliveira MA. Thermal analysis applied to verapamil hydrochloride characterization in pharmaceutical formulations. Molecules. 2010;15:2439–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Du Y, Xue J. investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques. Curr Pharm Des. 2016;22:4917–28.

    CAS  PubMed  Google Scholar 

  6. Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth Des. 2016;16:3237–43.

    CAS  Google Scholar 

  7. Harmsen B, Robeyns K, Wouters J, Leyssens T. A study of Fasoracetam’s solid state forms: a potential anti-alzheimer pharmaceutical. J Pharm Sci. 2017;106:1317–21. https://doi.org/10.1016/j.xphs.2017.01.016.

    CAS  Article  PubMed  Google Scholar 

  8. Hiendrawan S, Widjojokusumo E, Veriansyah B, Tjandrawinata RR. Pharmaceutical salts of carvedilol: polymorphism and physicochemical properties. AAPS PharmSciTech. 2017;18:1417–25.

    CAS  PubMed  Google Scholar 

  9. Gong N, Zhang G, Jin G, Du G, Lu Y. Polymorphs and versatile solvates of 7-hydroxyisoflavone. J Pharm Sci. 2016;105:1387–97.

    CAS  PubMed  Google Scholar 

  10. Li H, Kiang YH, Jona J. Multiple approaches to pharmaceutical polymorphism investigation—a case study. Eur J Pharm Sci. 2009;38:426–32.

    PubMed  Google Scholar 

  11. Nie J, Yang D, Hu K, Lu Y. Study on four polymorphs of bifendate based on X-ray crystallography. Acta Pharm Sin B. 2016;6:234–42. https://doi.org/10.1016/j.apsb.2016.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stofella NCF, Veiga A, Oliveira LJ, Montin EF, Andreazza IF, Filho MASC, et al. Solid-state characterization of different crystalline forms of sitagliptin. Materials (Basel). 2019;12:2351.

    CAS  PubMed Central  Google Scholar 

  13. Zhu X, Xu S, Lu L, Wang S, Zhao Q, Li D, et al. Preparation, characterization, and in vivo evaluation of a polymorphic form of valnemulin hydrogen tartrate. J Vet Sci. 2019;20:1–11.

    Google Scholar 

  14. Giannellini V, Bambagiotti-Alberti M, Bartolucci G, Bruni B, Coran SA, Costantino F, et al. Solid-state study of mepivacaine hydrochloride. J Pharm Biomed Anal. 2005;39:444–54.

    CAS  PubMed  Google Scholar 

  15. Brittain HG, Byrn SR, Lee E. Structural aspects of polymorphism. In: Brittain HG, editor. polymorph. pharm. solids. CRC Press; 2nd ed. 2016. p. 185–232.

  16. Alcolea V, Garnica P, Palop JA, Sanmartín C, González-Peñas E, Durán A, et al. Antitumoural sulphur and selenium heteroaryl compounds: thermal characterization and stability evaluation. Molecules. 2017;22:1314.

    PubMed Central  Google Scholar 

  17. Salunke N, Thipparaboina R, Chavan RB, Lodagekar A, Mittapalli S, Nangia A, et al. Rufinamide: crystal structure elucidation and solid state characterization. J Pharm Biomed Anal. 2018;149:185–92. https://doi.org/10.1016/j.jpba.2017.11.003.

    CAS  Article  PubMed  Google Scholar 

  18. Xu K, Zheng S, Zhai Y, Guo L, Tang P, Yan J, et al. Two solid forms of tauroursodeoxycholic acid and the effects of milling and storage temperature on solid-state transformations. Int J Pharm. 2015;486:185–94.

    CAS  PubMed  Google Scholar 

  19. Caldeira TG, Saúde-Guimarães DA, De Lacerda DLR, Mussel WDN, Yoshida MI, De Souza J. Polymorphic characterization and implications on biopharmaceutics properties of potential anti-inflammatory drug candidate eremantholide C from Lychnophora trichocarpha (Brazilian Arnica). J Pharm Pharmacol. 2019;71:910–9.

    CAS  PubMed  Google Scholar 

  20. Herbrink M, Vromans H, Schellens J, Beijnen J, Nuijen B. Thermal stability study of crystalline and novel spray-dried amorphous nilotinib hydrochloride. J Pharm Biomed Anal. 2018;148:182–8. https://doi.org/10.1016/j.jpba.2017.10.001.

    CAS  Article  PubMed  Google Scholar 

  21. Simões RG, Bernardes CES, Joseph A, Piedade MFM, Kraus W, Emmerling F, et al. Polymorphism in simvastatin: twinning, disorder, and enantiotropic phase transitions. Mol Pharm. 2018;15:5349–60.

    PubMed  Google Scholar 

  22. Láng P, Várkonyi E, Ulrich J, Szabó-Révész P, Aigner Z. Analysis of the polymorph changes of a drug candidate. J Pharm Biomed Anal. 2015;102:229–35. https://doi.org/10.1016/j.jpba.2014.09.020.

    CAS  Article  PubMed  Google Scholar 

  23. Lohani S, Cooper H, Jin X, Nissley BP, Manser K, Rakes LH, et al. Physicochemical properties, form, and formulation selection strategy for a biopharmaceutical classification system class II preclinical drug candidate. J Pharm Sci. 2014;103:3007–21. https://doi.org/10.1002/jps.24088.

    CAS  Article  PubMed  Google Scholar 

  24. Marques MPM, Valero R, Parker SF, Tomkinson J, Batista De Carvalho LAE. Polymorphism in cisplatin anticancer drug. J Phys Chem B. 2013;117:6421–9.

    CAS  PubMed  Google Scholar 

  25. Shamsipur M, Pourmortazavi SM, Beigi AAM, Heydari R, Khatibi M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech. 2013;14:287–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20:18759–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Blandizzi C, Viscomi GC, Scarpignato C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in healthy volunteers. Drug Des Dev Ther. 2014;9:1–11.

    Google Scholar 

  28. Jacon Freitas JT, Santos Viana OMM, Bonfilio R, Doriguetto AC, de Araújo MB. Analysis of polymorphic contamination in meloxicam raw materials and its effects on the physicochemical quality of drug product. Eur J Pharm Sci. 2017;109:347–58.

    CAS  PubMed  Google Scholar 

  29. Svärd M, Valavi M, Khamar D, Kuhs M, Rasmuson ÅC. Thermodynamic stability analysis of tolbutamide polymorphs and solubility in organic solvents. J Pharm Sci. 2016;105:1901–6.

    PubMed  Google Scholar 

  30. FDA. Guideline for submitting supporting documentation in drug applications for the manufacture of drug substances, vol 20857; 1987. p. 4–28 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070632.pdf. Accessed 10 July 2020.

  31. ICH. ICH topic Q 6 a specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances. In: Int conf harmon tech requir regist pharm hum use. 1999.

  32. Byrn S, Pfeiffer R, Ganey M, Hoiberg C, Poochikian G. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm Res Off J Am Assoc Pharm Sci. 1995;12:945–54.

    CAS  Google Scholar 

  33. Reilly AM, Tkatchenko A. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys Rev Lett. 2014;113:1–5.

    Google Scholar 

  34. Lima SGB, Pinho LAG, Pereira MN, Gratieri T, Sa-Barreto LL, Gelfuso GM, et al. Preformulation studies of finasteride to design matrix systems for topical delivery. J Pharm Biomed Anal. 2018;161:273–9. https://doi.org/10.1016/j.jpba.2018.08.056.

    CAS  Article  PubMed  Google Scholar 

  35. da Silva LM, Montanari CM, Santos OMM, Cazedey ECL, Ângelo ML, de Araújo MB. Quality evaluation of the Finasteride polymorphic forms I and II in capsules. J Pharm Biomed Anal. 2015;105:24–31. https://doi.org/10.1016/j.jpba.2014.11.045.

    CAS  Article  PubMed  Google Scholar 

  36. de Lima Gomes EC, de Carvalho IE, Fialho SL, Barbosa J, Yoshida MI, Júnior ADSC. Mixing method influence on compatibility and polymorphism studies by DSC and statistical analysis: application to tenofovir disoproxil fumarate. J Therm Anal Calorim. 2018;131:2123–8.

    Google Scholar 

  37. Corrêa JCR, Perissinato AG, Dos Reis Serra CH, Trevisan MG, Salgado HRN. Polymorphic stability of darunavir and its formulation. J Therm Anal Calorim. 2016;123:2185–90.

    Google Scholar 

  38. Roque-Flores RL, do Rosário Matos J. Simultaneous measurements of X-ray diffraction–differential scanning calorimetry: the investigation of the phase transition of ganciclovir and characterization of its polymorphic forms. J Therm Anal Calorim. 2019;137:1347–58.

    CAS  Google Scholar 

  39. Wang J, Chen S, Zhang Y, Guan J, Su GY, Ding M, et al. Anti-inflammatory and analgesic activity based on polymorphism of cedrol in mice. Environ Toxicol Pharmacol. 2019;68:13–8. https://doi.org/10.1016/j.etap.2019.02.005.

    CAS  Article  PubMed  Google Scholar 

  40. Maestrelli F, Rossi P, Paoli P, De Luca E, Mura P. The role of solid state properties on the dissolution performance of flufenamic acid. J Pharm Biomed Anal. 2020;180:113058. https://doi.org/10.1016/j.jpba.2019.113058.

    CAS  Article  PubMed  Google Scholar 

  41. Detrich Á, Dömötör KJ, Katona MT, Markovits I, Vargáné Láng J. Polymorphic forms of bisoprolol fumarate: preparation and characterization. J Therm Anal Calorim. 2019;135:3043–55.

    CAS  Google Scholar 

  42. Ciciliati MA, Cavalheiro ÉTG. Studies of thermal behavior of metoprolol tartrate. J Therm Anal Calorim. 2019;138:3653–63.

    CAS  Google Scholar 

  43. Ambrozini B, Cervini P, Cavalheiro ÉTG. Thermal behavior of the β-blocker propranolol. J Therm Anal Calorim. 2016;123:1013–7.

    CAS  Google Scholar 

  44. de Souza CMP, dos Santos JAB, do Nascimento AL, de Chaves Júnior JV, de Lima Ramos Júnior FJ, de Lima Neto SA, et al. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2018;131:681–9.

    Google Scholar 

  45. Honorato SB, Mendonça JS, Boechat N, Oliveira AC, Mendes Filho J, Ellena J, et al. Novel polymorphs of the anti-Trypanosoma cruzi drug benznidazole. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;118:389–94. https://doi.org/10.1016/j.saa.2013.08.096.

    CAS  Article  Google Scholar 

  46. Perold Z, Caira MR, Brits M. The risk of recrystallization: changes to the toxicity and morphology of pyrimethamine. J Pharm Pharm Sci. 2014;17:190–206.

    PubMed  Google Scholar 

  47. Testa CG, Prado LD, Costa RN, Costa ML, Linck YG, Monti GA, et al. Challenging identification of polymorphic mixture: POLYMORPHS I, II and III in olanzapine raw materials. Int J Pharm. 2019;556:125–35.

    CAS  PubMed  Google Scholar 

  48. Djellouli F, Dahmani A, Hassani A. Characterization of the polymorph changes in Trimethoprim. J Therm Anal Calorim. 2017;130:1585–91.

    CAS  Google Scholar 

  49. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56:335–47.

    CAS  PubMed  Google Scholar 

  50. Park K, Evans JMB, Myerson AS. Determination of solubility of polymorphs using differential scanning calorimetry. Cryst Growth Des. 2003;3:991–5.

    CAS  Google Scholar 

  51. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. WHO. Leishmaniasis among neighbouring endemic countries in the eastern mediterranean, African and European regions. East Mediterr Heal J. 2019. 66–8. http://www.who.int/leishmaniasis/resources/who-em-ctd-081-e/en/. Accessed 13 July 2020.

  53. De Menezes JPB, Guedes CES, De Oliveira Almeida Petersen AL, Fraga DBM, Veras PST. Advances in development of new treatment for leishmaniasis. Biomed Res Int. 2015;2015:15–8.

    Google Scholar 

  54. Tanini D, D’Esopo V, Tatini D, Ambrosi M, Lo Nostro P, Capperucci A. Selenated and sulfurated analogues of triacyl glycerols: selective synthesis and structural characterization. Chem A Eur J. 2019;26:2719–25.

    Google Scholar 

  55. Plano D, Lizarraga E, Palop JA, Sanmartín C. Study of polymorphism of organosulfur and organoselenium compounds. J Therm Anal Calorim. 2011;105:1007–13.

    CAS  Google Scholar 

  56. Plano D, Baquedano Y, Moreno-Mateos D, Font M, Jiménez-Ruiz A, Palop JA, et al. Selenocyanates and diselenides: a new class of potent antileishmanial agents. Eur J Med Chem. 2011;46:3315–23. https://doi.org/10.1016/j.ejmech.2011.04.054.

    CAS  Article  PubMed  Google Scholar 

  57. Díaz M, Palop JA, Sanmartín C, Lizarraga E. Thermal stability and decomposition of urea, thiourea and selenourea analogous diselenide derivatives. J Therm Anal Calorim. 2017;127:1663–74.

    Google Scholar 

  58. Jiménez I, Plano D, Palop JA, Sanmartín C, Lizarraga E. Thermal stability of selenium, sulfur and nitrogen analogous phthalazine derivatives. J Therm Anal Calorim. 2013;111:605–10.

    Google Scholar 

  59. Lizarraga E, Zabaleta C, Palop JA. Thermal stability and decomposition of pharmaceutical compounds. J Therm Anal Calorim. 2007;89:783–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sanmartín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etxebeste, M., Durán, A., Sanmartín, C. et al. Thermal characterization and stability evaluation of leishmanicidal selenocyanate and diselenide derivatives. J Therm Anal Calorim 147, 3127–3139 (2022). https://doi.org/10.1007/s10973-020-10544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10544-x

Keywords

  • DSC
  • Leishmanicidal agents
  • Polymorphism
  • Selenium
  • Thermal stability
  • Thermogravimetry
  • X-ray diffraction