Skip to main content
Log in

Nonisothermal melt and cold crystallization behaviors of biodegradable poly(lactic acid)/Ti3C2Tx MXene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, biodegradable poly(lactic acid) (PLA)/Ti3C2Tx MXene nanocomposites were prepared through melt compounding. The roles of MXene in nonisothermal melt and cold crystallization of PLA were explored. The morphology, structure and crystallization behavior were studied using polarized optical microscopy, wide-angle X-ray diffraction and differential scanning calorimetry. For nonisothermal melt crystallization, the presence of MXene increases the crystallinity and shortens the half-crystallization time but does not change the crystallization peak temperature of PLA. For nonisothermal crystallization from the glassy state, the incorporation of MXene decreases the cold crystallization peak temperature and reduces the crystallinity marginally but does not affect the half-crystallization time of PLA. The crystallization kinetics analysis based on the Avrami equation shows that, for both the melt and cold crystallization, the crystallization mechanism is unchanged irrespective of the addition of MXene. The investigation would be useful for understanding the correlation between processing and properties of PLA/MXene nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R. Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev. 2016;107:333–66.

    CAS  PubMed  Google Scholar 

  2. dos Santos Silva ID, Schäfer H, Jaques NG, Siqueira DD, Ries A, de Souza Morais DD. An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorim. 2019;141:1389–97.

    Google Scholar 

  3. Díaz-Díaz AM, López-Beceiro J, Li Y, Cheng Y, Artiaga R. Crystallization kinetics of a commercial poly(lactic acid) based on characteristic crystallization time and optimal crystallization temperature. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10081-7.

    Article  Google Scholar 

  4. Zhao Y, Zhu B, Wang Y, Liu C, Shen C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater Sci Eng C. 2019;105:110041.

    CAS  Google Scholar 

  5. Wu B, Zeng Q, Niu D, Yang W, Dong W, Chen M, et al. Design of supertoughened and heat-resistant PLLA/Elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology. Macromolecules. 2019;52:1092–103.

    Google Scholar 

  6. Zhu B, Wang Y, Liu H, Ying J, Liu C, Shen C. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos Sci Technol. 2020;190:108048.

    CAS  Google Scholar 

  7. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    CAS  Google Scholar 

  8. Wang Y, Li M, Shen C. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Mater Lett. 2011;65:3525–8.

    CAS  Google Scholar 

  9. Wang Y, Li M, Wang K, Shao C, Li Q, Shen C. Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter. 2014;10:1512–8.

    CAS  PubMed  Google Scholar 

  10. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    CAS  Google Scholar 

  11. Xu Y, Wang Y, Xu T, Zhang J, Liu C, Shen C. Crystallization kinetics and morphology of partially melted poly(lactic acid). Polym Test. 2014;37:179–85.

    CAS  Google Scholar 

  12. Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, et al. Memory effect on the crystallization behavior of poly(lactic acid) probed by infrared spectroscopy. Eur Polym J. 2017;91:376–85.

    CAS  Google Scholar 

  13. Wei Z, Shao S, Sui M, Song P, He M, Xu Q, et al. Development of zinc salts of amino acids as a new class of biocompatible nucleating agents for poly(l-lactide). Eur Polym J. 2019;118:337–46.

    CAS  Google Scholar 

  14. Kong W, Tong B, Ye A, Ma R, Gou J, Wang Y, et al. Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator. J Therm Anal Calorim. 2018;135:3107–14.

    Google Scholar 

  15. Kong W, Zhu B, Su F, Wang Z, Shao C, Wang Y, et al. Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer. 2019;168:77–85.

    CAS  Google Scholar 

  16. Zhang H, Wang S, Zhang S, Ma R, Wang Y, Cao W, et al. Crystallization behavior of poly(lactic acid) with a self-assembly aryl amide nucleating agent probed by real-time infrared spectroscopy and X-ray diffraction. Polym Test. 2017;64:12–9.

    CAS  Google Scholar 

  17. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull. 2012;70:195–206.

    Google Scholar 

  18. Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C. Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. 2013;48:2737–46.

    Google Scholar 

  19. Wang Y, He D, Wang X, Cao W, Li Q, Shen C. Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polym Bull. 2013;70:2911–22.

    CAS  Google Scholar 

  20. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, et al. Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules. 2011;44:6496–502.

    CAS  Google Scholar 

  21. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, et al. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol. 2020;151:628–34.

    CAS  PubMed  Google Scholar 

  22. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys. 2009;47:326–39.

    CAS  Google Scholar 

  23. Xu J, Chen T, Yang C, Li Z, Mao Y, Zeng B, et al. Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules. 2010;43:5000–8.

    CAS  Google Scholar 

  24. Wu D, Cheng Y, Feng S, Yao Z, Zhang M. Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res. 2013;52:6731–9.

    CAS  Google Scholar 

  25. Zeng Q, Wang Y, Wang Y, Cao W, Liu C, Shen C. Polyethylene oxide-assisted dispersion of graphene nanoplatelets in poly(lactic acid) with enhanced mechanical properties and crystallization ability. Polym Test. 2019;78:106008.

    Google Scholar 

  26. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26:992–1005.

    CAS  PubMed  Google Scholar 

  27. Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater. 2020;32(5):1703–47.

    CAS  Google Scholar 

  28. Shi Y, Liu C, Liu L, Fu L, Yu B, Lv Y, et al. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem Eng J. 2019;378:122267.

    Google Scholar 

  29. Ling Z, Ren C, Zhao M, Yang J, Giammarco JM, Qiu J, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci. 2014;111:16676–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Naguib M, Saito T, Lai S, Rager MS, Aytug T, Parans Paranthaman M, et al. Ti3C2Tx(MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;76:72069–73.

    Google Scholar 

  31. Luo J, Zhao S, Zhang H, Deng Z, Li L, Yu Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos Sci Technol. 2019;182:107754.

    CAS  Google Scholar 

  32. Zhao M, Ren C, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater. 2015;27:339–45.

    CAS  PubMed  Google Scholar 

  33. Zhang H, Wang L, Chen Q, Li P, Zhou A, Cao X, et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater Des. 2016;92:682–9.

    CAS  Google Scholar 

  34. Chen K, Chen Y, Deng Q, Jeong SH, Jang T, Du S, et al. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for guided bone regeneration. Mater Lett. 2018;229:114–7.

    CAS  Google Scholar 

  35. Yi Z, Yang J, Liu X, Mao L, Cui L, Liu Y. Enhanced mechanical properties of poly(lactic acid) composites with ultrathin nanosheets of MXene modified by stearic acid. J Appl Polym Sci. 2019;137:48621.

    Google Scholar 

  36. Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019;19:1143–50.

    PubMed  Google Scholar 

  37. Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv Mater. 2014;26:6905–11.

    CAS  PubMed  Google Scholar 

  38. Xu J, Zhong G, Hsiao BS, Fu Q, Li Z. Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci. 2014;39:555–93.

    CAS  Google Scholar 

  39. Huang Z, Wang S, Kota S, Pan Q, Barsoum MW, Li C. Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer. 2016;102:119–26.

    CAS  Google Scholar 

  40. Liang L, Han G, Li Y, Zhao B, Zhou B, Feng Y, et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces. 2019;11:25399–409.

    CAS  PubMed  Google Scholar 

  41. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R, et al. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl Mater Interfaces. 2020;12:2644–54.

    CAS  PubMed  Google Scholar 

  42. Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Degrad Stab. 2008;93:2133–7.

    Google Scholar 

  43. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R. Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer. 2012;53:4429–37.

    CAS  Google Scholar 

  44. Refaa Z, Boutaous M, Xin S, Siginer DA. Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc: kinetics and crystalline structures. J Therm Anal Calorim. 2017;128:687–98.

    CAS  Google Scholar 

  45. Kalish JP, Aou K, Yang X, Hsu SL. Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(L-lactic acid). Polymer. 2011;52:814–21.

    CAS  Google Scholar 

  46. Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J Polym Sci Part B Polym Phys. 2011;49:409–13.

    CAS  Google Scholar 

  47. He D, Wang Y, Shao C, Zheng G, Li Q, Shen C. Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test. 2013;32:1088–93.

    CAS  Google Scholar 

  48. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    CAS  Google Scholar 

  49. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177–84.

    CAS  Google Scholar 

  50. Lorenzo AT, Arnal ML, Albuerne J, Muller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    CAS  Google Scholar 

  51. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    CAS  Google Scholar 

  52. Xu T, Wang Y, Han Q, He D, Li Q, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci Part B Phys. 2014;53:1680–94.

    CAS  Google Scholar 

  53. Yu J, Qiu Z. Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(L-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res. 2011;50:12579–86.

    CAS  Google Scholar 

  54. Haji Abdolrsaouli M, Babaei A, Kaschta J, Nazockdat H. Polylactide/organoclay nanocomposites: the effect of organoclay types on the structure development and the kinetic of cold crystallization. J Vinyl Addit Technol. 2018;25:48–58.

    Google Scholar 

  55. Wang Y, Funari SS, Mano JF. Influence of semicrystalline morphology on the glass transition of poly(L-lactic acid). Macromol Chem Phys. 2006;207:1262–71.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52073261, U1704162), and the 111 Project (D18023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Wang, B., Qin, C. et al. Nonisothermal melt and cold crystallization behaviors of biodegradable poly(lactic acid)/Ti3C2Tx MXene nanocomposites. J Therm Anal Calorim 147, 2239–2251 (2022). https://doi.org/10.1007/s10973-020-10502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10502-7

Keywords

Navigation