Skip to main content
Log in

Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was used to prepare biocompatible composites modified by the hemp fibers. The aim of the study was to assess the structure and selected thermal and mechanical properties of the obtained biocomposites. The morphology of samples was analyzed using a scanning electron microscope and a computed tomography analysis. The phase transitions of composites and polymer matrix were investigated using differential scanning calorimetry. Moreover, the non-equilibrium and equilibrium thermal parameters of composites and the unfilled PHBV were established based on the thermal history. Knowing equilibrium parameters, i.e., the heat of fusion for the fully crystalline materials, ΔHf (100%), and the change of heat capacity at glass transition temperature (Tg) for the fully amorphous, ΔCp (100%), composites, the degree of crystallinity, mobile, and rigid amorphous fractions were estimated. The addition of hemp fibers to the PHBV matrix caused around a two-time increase in the degree of crystallinity in reference to the unfilled PHBV. It was also observed that the addition of hemp fibers caused a decrease in heat capacity for fully amorphous material for all the biocomposites obtained. A similar relationship was observed in case of values of the heat of fusion for fully crystalline material. Simultaneously, the decrease in amorphous phase contents was noted. It was also noted that the rigid amorphous fraction exists only for the unfilled polymer matrix. Some mechanical properties of investigated materials were also measured and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Netravali AN, Chabba S. Composites get greener. Materials today, Elsevier. 2003;6:22–9.

    Article  Google Scholar 

  2. Terzopouloua Z, Papageorgioua G, Papadopouloub E, Athanassiadoub E, Alexopoulouc E, Bikiarisa D. Green composites prepared from aliphatic polyesters and bast fibers. Ind Crop Prod. 2015;68:60–79.

    Article  Google Scholar 

  3. Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C. Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym. 1996;32:1243–50.

    Article  CAS  Google Scholar 

  4. Joseph PV, Mathew G, Joseph K, Thomas S, Pradeep P. Mechanical properties of short sisal fiber-reinforced polypropylene composites: comparison of experimental data with theoretical predictions. J Appl Polym Sci. 2003;88:602–11.

    Article  CAS  Google Scholar 

  5. Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stabil. 2005;89:327–35.

    Article  CAS  Google Scholar 

  6. Suardana NPG, Piao Y, Lim JK. Mechanical properties of hemp fibers and hemp/pp composites: effects of chemical surface treatment. Mater Phys Mech. 2011;11:1–8.

    CAS  Google Scholar 

  7. Le TM, Pickering KL. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos Part A-Appl Sci Manuf. 2015;76:44–53.

    Article  CAS  Google Scholar 

  8. Beckermann G. Performance of hemp-fibre reinforced polypropylene composite materials, PhD Dissertation, The University of Waikato, 2007.

  9. Madsen B, Thygesen A, Lilholt H. Plant fibre composites–porosity and stiffness. Compos Sci Technol. 2009;69:1057–69.

    Article  CAS  Google Scholar 

  10. Madsen B, Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites - an evaluation of the influence of porosity. Compos Sci Technol. 2003;63:1265–72.

    Article  CAS  Google Scholar 

  11. Niska KO, Sain M. Wood-polymer composites. Amsterdam: Elsevier; 2008.

    Book  Google Scholar 

  12. Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Bikiaris DN. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim. 2015;121:93–105.

    Article  CAS  Google Scholar 

  13. Khoathane MC, Vorster OC, Sadiku ER. Hemp fiber-reinforced 1-pentene/polypropylene copolymer: the effect of fiber loading on the mechanical and thermal characteristics of the composites. J Reinf Plast Comp. 2008;27:1533–44.

    Article  CAS  Google Scholar 

  14. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN. Green composites prepared from aliphatic polyesters and bast fibers. Ind Crops Prod. 2015;68:60–79.

    Article  CAS  Google Scholar 

  15. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Reinders M, Bikiaris DN. Development and study of fully biodegradable composite materials based on poly (butylene succinate) and hemp fibers or hemp shives. Polym Compos. 2016;37:407–21.

    Article  CAS  Google Scholar 

  16. Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37:1552–96.

    Article  CAS  Google Scholar 

  17. Kelly A, Tyson AW. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids. 1965;13:329–50.

    Article  CAS  Google Scholar 

  18. Scholz C. Poly(13-hydroxyalkanoates) as potential biomedical materials: an overview, polymers from renewable resources, ACS symposium series. Am Chem Soc Washington, DC. 2001;21:328–34.

    Google Scholar 

  19. Białkowska A, Bakar M, Przybyłek M. Effect of nonisocyanate polyurethane and nanoclay on the mechanical properties of an epoxy resin. Mech Compos Mater. 2018;54:665–74.

    Article  Google Scholar 

  20. Białkowska A, Mucha K, Przybyłek M, Bakar M. Effect of hard segments content on the properties, structure and biodegradation of nonisocyanate polyurethane. Polym Polym Compos. 2018;26:423–30.

    Google Scholar 

  21. Beun JJ, Dircks K, Van Loosdrecht MCM, Heijnen JJ. Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res. 2002;36:1167–80.

    Article  CAS  PubMed  Google Scholar 

  22. Serafim LS, Lemos PC, Albuquerque MG, Reis MA. Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol. 2008;81:615–28.

    Article  CAS  PubMed  Google Scholar 

  23. Beccari M, Bertin L, Dionisi D, Fava F, Lampis S, Majone M, Valentino F, Vallini G, Villano M. Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic–aerobic process. J Chem Technol Biotechnol. 2009;84:901–8.

    Article  CAS  Google Scholar 

  24. Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM. Mixed culture poly-hydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol. 2011;151:66–76.

    Article  CAS  PubMed  Google Scholar 

  25. Zarzyka-Niemiec I. Reaction pathway and product analysis for hydroxyalkylation of urea and N, N-Bis(2-hydroxypropyl)urea with propylene carbonate. J Appl Polym. 2008;110:3917–25.

    Article  CAS  Google Scholar 

  26. Zarzyka-Niemiec I. Synthesis and application of oligomers obtained from oxamic acid and ethylene carbonate. Polimery. 2009;54:99–105.

    Article  CAS  Google Scholar 

  27. Niaounakis M. Biopolymers: reuse, recycling, and disposal. Amsterdam: William Andrew; 2013.

    Google Scholar 

  28. Zarzyka-Niemiec I, Lubczak J. Thermal properties of polyurethanes and polyacrylates with trioxoimidazolidine rings. Polimery. 2006;51:305–9.

    Article  CAS  Google Scholar 

  29. Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol. 2005;6:1–8.

    Article  CAS  Google Scholar 

  30. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.

    Article  CAS  PubMed  Google Scholar 

  31. Zinn M, Hany R. Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater. 2005;7:408–11.

    Article  CAS  Google Scholar 

  32. Chiellini E, Solaro R. Biodegradable polymeric materials. Adv Mater. 1996;8:305–13.

    Article  CAS  Google Scholar 

  33. Chen LJ, Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials. 2002;23:2631–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kumarasuriyar A, Jackson RA, Grøndahl L, Trau M, Nurcombe V, Cool SM. Poly (β-hydroxybutyrate-co-β-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng. 2005;11:1281–95.

    Article  CAS  PubMed  Google Scholar 

  35. Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN. Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci-Mater M. 2004;15:719–28.

    Article  CAS  Google Scholar 

  36. Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Tech. 1999;18:351–63.

    Article  CAS  Google Scholar 

  37. Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotive applications. Jom. 2006;58:80–6.

    Article  CAS  Google Scholar 

  38. Czerniecka-Kubicka A, Zarzyka I, Pyda M. Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity. J Therm Anal Calorim. 2017;127:905–14.

    Article  CAS  Google Scholar 

  39. Magoń A, Pyda M. Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer. 2009;50:3967–73.

    Article  Google Scholar 

  40. Malmgren T, Mays J, Pyda M. Characterization of biodegradable poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Thermal Anal Calorim. 2006;83:35–40.

    Article  CAS  Google Scholar 

  41. ATHAS Data Bank. Available from SpringerMaterials. www.springermaterials.com.

  42. Pyda M, Xiao H, Cebe P. Heat capacity of silk fibroin based on the vibrational-motion of poly(amino acid)s in the presence and absence of water. Macromolecules. 2008;41:4786–93.

    Article  CAS  Google Scholar 

  43. Magoń A, Wurm A, Schick C, Pangloli P, Zivanovic S, Skotnicki M, Pyda M. Heat capacity and transition behaviour of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim Acta. 2014;589:183–96.

    Article  Google Scholar 

  44. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005.

    Google Scholar 

  45. Czerniecka-Kubicka A, Schliesser J, Popovic M, Woodfield BF, Walczak M, Zarzyka I, Pyda M. Molecular interpretation of low-temperature heat capacity of aliphatic oligo-urethane. J Chem Thermodyn. 2017;112:299–307.

    Article  CAS  Google Scholar 

  46. Czerniecka-Kubicka A, Zielecki W, Frącz W, Janus-Kubiak M, Kubisz L, Pyda M. Vibrational heat capacity of the linear 6,4-polyurethane. Thermochim Acta. 2020;683:178433.

    Article  CAS  Google Scholar 

  47. Czerniecka-Kubicka A, Frącz W, Jasiorski M, Pilch-Pitera B, Pyda M, Zarzyka I. Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J Therm Anal Calorim. 2017;128:1513–26.

    Article  CAS  Google Scholar 

  48. Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Triantafyllidis K, Bikiaris DN. Effect of malei anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim. 2015;121:93–105.

    Article  CAS  Google Scholar 

  49. Pyda M. Melting. Wiley, New York: Handbook of polymer crystallization; 2013.

    Google Scholar 

  50. Wunderlich B. Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci. 2003;28:383–450.

    Article  CAS  Google Scholar 

  51. Mathot VBF, editor. Calorimetry and thermal analysis of polymers. München: Hanser Publishers; 1994.

    Google Scholar 

  52. Di Lorenzo ML, Pyda M, Wunderlich B. Reversible melting in nanophase-separated poly (oligoamide-alt-oligoether)s and its dependence on sequence length, crystal perfection, and molecular mobility. J Polym Sci B Polym Phys. 2001;39:1594–604.

    Article  Google Scholar 

  53. Keller A. Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol. 2003;63:1307–16.

    Article  CAS  Google Scholar 

  54. Sawpan MA, Pickering KL, Fernyhough A. Hemp fibre reinforced poly (lactic acid) composites. Adv Mat Res. 2007;29:337–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Czerniecka-Kubicka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerniecka-Kubicka, A., Janowski, G., Pyda, M. et al. Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties. J Therm Anal Calorim 147, 1017–1029 (2022). https://doi.org/10.1007/s10973-020-10492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10492-6

Keywords

Navigation