Skip to main content
Log in

Combustion, performance and emissions of Acacia concinna biodiesel blends in a diesel engine with variable specific heat ratio

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental assessment based on combustion, heat transfer, performance and emission behavior of a 3.5 kW light duty commercial diesel engine have been executed to explore the viability of Acacia Concinna biodiesel (ACBD) (unexplored and produced from new non-edible forest feedstock) as surrogate to mineral diesel in the prevailing CI engines. The result enumerates that effect of variation in specific heat ratio as a function of in-cylinder gas temperature, on combustion heat release rate, cumulative heat release and power output is significant. Higher fraction of diffusion combustion phase with extended overall combustion duration and slightly higher heat loss per cycle was recorded for AC biodiesel fuel blends than that of diesel. The engine operation was smooth with no negative effect (except NOx emission) when fueled up to B30 (AC30D70) fuel blend compared to those of diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AC :

Acacia Concinna

ASTM:

American Society for Testing and Materials

A s :

Cylinder surface area (m2)

BDD:

Blend of biodiesel and diesel

BTE:

Brake thermal efficiency

BSEC:

Brake specific energy consumption

BSFC:

Brake specific fuel consumption

bTDC:

Before top dead center

CD:

Combustion duration

CHR:

Cumulative heat release

CI:

Compression ignition

CN:

Cetane number

CO:

Carbon monoxide

N :

Rotational speed

NOx :

Nitrogen oxide

Pmax:

Maximum cylinder pressure

PM:

Particulate matter

ROPR:

Rate of pressure rise

SMD:

Sauter mean diameter

SOC:

Start of combustion

SOI:

Start of injection

S p :

Mean piston speed

Texh:

Exhaust gas temperature

THR:

Total heat release

°CA:

Degree crank angle

α s :

Calibration constant

References

  1. International Energy Outlook-2018. Analysis and projections. Report Number: DOE/EIA-0484 (2016). EIA, U.S Energy information administration, U.S.

  2. Kumar N, Varun, Chauhan SR. Performance and emission characteristics of biodiesel from different origins: a review. Renew Sustain Energy Rev. 2013;2013(21):633–58.

    Article  Google Scholar 

  3. Karikalan L, Chandrasekaran M, Vinod Kumar T, Sridhar R. Behavior of CI engine performance, combustion and exhaust emission with neem biodiesel at varied fuel injection rates. Int J Ambient Energy. 2018;7:1–9.

    Google Scholar 

  4. Saxena V, Kumar N, Saxena VK. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fueled CI engine. Renew Sustain Energy Rev. 2017;70:563–88.

    Article  CAS  Google Scholar 

  5. Anawe PAL, Adewale FJ. Data on physico-chemical, performance, combustion and emission characteristics of Persea Americana Biodiesel and its blends on direct-injection, CI engines. Data Brief. 2018;21:1533–40.

    Article  CAS  Google Scholar 

  6. Kumar N, Varun, Chauhan SR. Evaluation of endurance characteristics for a modified diesel engine runs on jatropha biodiesel. Appl Energy. 2016;155:253–69.

    Article  Google Scholar 

  7. Kumar N, Varun, Chauhan SR. Evaluation of the effects of engine parameters on performance and emissions of diesel engine operating with biodiesel blend. Int J Ambient Energy. 2016;37:121–35.

    Article  CAS  Google Scholar 

  8. Saxena V, Kumar N, Saxena VK. Biodiesel synthesis from Acacia concinna seed oil: a comprehensive study. Energy Sources Part A Recovery Util Environ Eff. 2018;17(40):1–12.

    Google Scholar 

  9. Thangaraja J, Srinivasan V. Techno-economic assessment of coconut biodiesel as a potential alternative fuel for compression ignition engines. Environ Sci Pollut Res Int. 2019;26(9):8650–64.

    Article  CAS  Google Scholar 

  10. Kumar N. Oxidative stability of biodiesel: causes, effects and prevention. Fuel. 2017;190:328–50.

    Article  CAS  Google Scholar 

  11. Chen H, Guo Q, Zhao XY, Xu ML, Ma Y. Influence of fuel temperature on combustion and emission of biodiesel. J Energy Inst. 2015;89(2):1–9.

    Google Scholar 

  12. Alloune R, Balistrou M, Awad S, Loubar K, Tazerout M. Performance, combustion and exhaust emissions characteristics investigation using Citrillus coloquinthis BD in DI diesel engine. J Energy Inst. 2017;91(3):1–10.

    Google Scholar 

  13. Tudu K, Murugan S, Patel SK. Evaluation of a DI diesel engine run on a tyre derived fuel-diesel blend. J Energy Inst. 2015;89(4):1–10.

    Google Scholar 

  14. Raheman H, Ghadge SV. Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel. 2007;86:2568–73.

    Article  CAS  Google Scholar 

  15. Shehata MS. Emissions, performance and cylinder pressure of diesel engine fueled by biodiesel fuel. Fuel. 2013;112:513–22.

    Article  CAS  Google Scholar 

  16. Ozener O, Yuksek L, Ergenç AT, Ozkan M. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 2014;115:875–83.

    Article  CAS  Google Scholar 

  17. Canakci M, Ozsezen AN, Arcaklioglu E, Erdil A. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Exp Syst Appl. 2009;36:9268–80.

    Article  Google Scholar 

  18. Nabi MN, Hoque SMN, Akhter MS. Karanja (Pongamia Pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Proc Technol. 2009;90:1080–6.

    Article  CAS  Google Scholar 

  19. Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Kusumo F, Aditiya HB, Ghazali NNN. Schleichera oleosa L oil as feedstock for biodiesel production. Fuel. 2015;156:63–70.

    Article  CAS  Google Scholar 

  20. Ong HC, Masjuki HH, Mahlia TMI, Silitonga AS, Chong WT, Leong KY. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers Manag. 2014;81:30–40.

    Article  CAS  Google Scholar 

  21. Khiari K, Awad S, Loubar K, Tarabe L, Mahmoud R, Tazerout M. Experimental investigation of pistacialentiscus biodiesel as a fuel for direct injection diesel engine. Energy Convers Manag. 2016;108:392–9.

    Article  CAS  Google Scholar 

  22. Kakati J, Gogoi TK. Biodiesel production from Kutkura fruit seed oil: Its characterization and engine performance evaluation with 10 and 20% blends. Energy Convers Manag. 2016;121:152–61.

    Article  CAS  Google Scholar 

  23. Pali S, Kumar N. Combustion, performance and emissions of Shorearobusta methyl ester blends in a diesel engine. Biofuels. 2016;1759:7269–77.

    Google Scholar 

  24. Sharma YC, Singh B. An ideal feedstock, kusum (Schleicheratriguga) for preparation of biodiesel: optimization of parameters. Fuel. 2010;89:1470–4.

    Article  CAS  Google Scholar 

  25. Atabani AE, Mofijur M, Masjuki HH, Irfan A, Badruddin IA, Chong WT, Cheng SF, Gouk SW. A study of production and characterization of Manketti (Ricinodendron rautonemii) methyl ester and its blends as a potential biodiesel feedstock. Biofuel Res J. 2014;4:139–46.

    Article  Google Scholar 

  26. Ashok B, Nanthagopal K, Vignesh DS. Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alex Eng J. 2017;57(3):1239–47.

    Article  Google Scholar 

  27. Asokan MA, Senthur Prabu S, Bade PKK, Nekkanti VM, Gutta SSG. Performance, combustion and emission characteristics of juliflora biodiesel fueled DI diesel engine. Energy. 2019;173:883–92.

    Article  CAS  Google Scholar 

  28. Dhar A, Kevin R, Agarwal AK. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Process Technol. 2012;97:118–29.

    Article  CAS  Google Scholar 

  29. Gumus M, Kasifoglu S. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass Bio Energy. 2010;34:134–9.

    Article  CAS  Google Scholar 

  30. Gumus M. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines. Renew Energy. 2008;33:2448–57.

    Article  CAS  Google Scholar 

  31. Shehata MS, Razek SMA. Experimental investigation of diesel engine performance and emission characteristics using jojoba/diesel blend and sunflower oil. Fuel. 2011;90:886–97.

    Article  CAS  Google Scholar 

  32. Bueno VA, BentroPereira MP, Pontes JVO, Luna MT, Cavalcante CL Jr. Performance and emissions characteristics of castor oil biodiesel fuel blends. Appl Therm Eng. 2017;125:559–66.

    Article  CAS  Google Scholar 

  33. Devan PK, Mahalakshmi NV. Performance, emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel. 2009;88(5):861–7.

    Article  CAS  Google Scholar 

  34. Saxena V, Kumar N, Saxena VK. Multi-objective optimization of modified nanofluid fuel blends at different TiO2 NP concentration in diesel engine: experimental assessment and modeling. Appl Energy. 2019;284:330–53.

    Article  Google Scholar 

  35. Sarvanan S, Nagarajan G, Sampath S. A correlation for the Ignition delay of a CI engine fueled with diesel and biodiesel. Int J Green Energy. 2014;11(5):542–55.

    Article  Google Scholar 

  36. Xiao H, Yang X, Hou B, Wang R, Xue Q, Ju H. Combustion performance and pollutant emissions analysis of a diesel engine fueled with biodiesel and its blend with 2-methylfuran. Fuel. 2019;273:1050–6.

    Article  Google Scholar 

  37. Kumar N. Study of oxygenated eco fuel applications in CI engine, gas turbine and jet engine. In: Azad K, Rasul M, editors. Advanced biofuel applications, technologies and environmental sustainability, vol. 4. Amsterdam: Elsevier; 2019. p. 5–37.

    Google Scholar 

  38. Bose PK. Empirical approach for predicting the cetane number of biodiesel. Int J Autom Technol. 2009;10(4):421–9.

    Article  Google Scholar 

  39. Abbaszadehmosayebi G. Diesel engine heat release analysis by using newly defined dimensionless parameters, PhD thesis, School of Engineering Design, Brunel University, UK; 2014.

  40. Ibrahim A. Performance and combustion characteristics of a diesel engine fueled by butanol-biodiesel-diesel blends. Appl Therm Eng. 2016;103:651–9.

    Article  CAS  Google Scholar 

  41. Heywood JB. Internal combustion engine fundamentals. McGraw-Hill education (India) Pvt. Ltd, New Delhi; 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, V., Kumar, N. & Saxena, V.K. Combustion, performance and emissions of Acacia concinna biodiesel blends in a diesel engine with variable specific heat ratio. J Therm Anal Calorim 147, 1281–1298 (2022). https://doi.org/10.1007/s10973-020-10483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10483-7

Keywords

Navigation