Skip to main content
Log in

Research on two sides horizontal flame spread over rigid polyurethane with different flame retardants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to reveal the effect of flame retardant to rigid polyurethane foam (RPUF), a medium-scale experimental platform was built to study horizontal two sides flame spread with non-flame retardant rigid polyurethane and rigid polyurethane with expanded graphite (EG) (5 mass% and 10 mass%), aluminum hypophosphite (AHP) (5 mass%) and aluminum diethylhypophosphite (ADP) (5 mass%), respectively. The results show that the flame retardant will limit the flame combustion intensity, and the combustion intensity of five samples follows the order as RPUF > RPUF/EG5 > RPUF/AHP5 > RPUF/ADP5 > RPUF/EG10. Meanwhile, with the addition of flame retardant, the combustion mechanism is different. The specimen with the addition of EG has the most obvious bending deformation, and the bending deformation of RPUF/EG10 is significantly higher than others, which is mainly caused by the low strength of EG. For RPUF/ADP5, the flame spread gives the maximum value, which can be attributed to the decreased ignition time and no reduction FGI. Due to the intumescent carbon layers formation when adding AHP, hindering mass and heat transportation, extinguishment happens eventually. On the other hand, the flame retardant of ADP shows better retardancy including the decreasing flame height, flame width, heat flux and flame temperature than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Visakh PM, Semkin AO, Rezaev IA, Fateev AV. Review on soft polyurethane flame retardant. Constr Build Mater. 2019;227(116673):1–7.

    Google Scholar 

  2. Jia DK, Hu J, He J, Yang R. Properties of a novel inherently flame-retardant rigid polyurethane foam composite bearing imide and oxazolidinone. J Appl Polym Sci. 2019;136(37):47943.

    Article  Google Scholar 

  3. Tabatabaee F, Khorasani M, Ebrahimi M, González A, Irustab L, Sardon H. Synthesis and comprehensive study on industrially relevant flame retardant waterborne polyurethanes based on phosphorus chemistry. Prog Org Coat. 2019;131:397–406.

    Article  CAS  Google Scholar 

  4. Chen X, Ma C, Jiao C. Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab. 2016;129:275–85.

    Article  CAS  Google Scholar 

  5. Zheng X, Wang GJ, Xu W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polym Degrad Stab. 2014;101:32–9.

    Article  CAS  Google Scholar 

  6. Zhang LQ, Zhang M, Zhou YH, Hu LH. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab. 2013;98(12):2784–94.

    Article  CAS  Google Scholar 

  7. Modesti M, Lorenzetti A, Besco S, Hrelja D, Semenzato S, Bertani R, Michelin RA. Synergism between flame retardant and modified layered silicate on thermal stability and fire behavior of polyurethane nanocomposite foams. Polym Degrad Stab. 2008;93(12):2166–71.

    Article  CAS  Google Scholar 

  8. Shi L, Li ZM, Xie BH, Wang JH, Tian CR, Yang MB. Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polym Int. 2010;55(8):862–71.

    Article  Google Scholar 

  9. Tu R, Yi Z, Fang J, Zhang Y. The influence of low air pressure on horizontal flame spread overflexible polyurethane foam and correlative smoke productions. Appl Therm Eng. 2016;94(10):133–3140.

    Article  CAS  Google Scholar 

  10. Ma X, Tu R, Ding C, Zeng Y, Wang Y, Fang T. Thermal and fire risk analysis of low pressure on building energy conservation material flexible polyurethane with various inclined facade constructions. Constr Build Mater. 2018;167:449–56.

    Article  CAS  Google Scholar 

  11. Tu R, Ma X, Zeng Y, Zhou XJ, He L, Fang TY, Fang J. Coupling effects of pressure and inclination on downward flame spread over flexible polyurethane foam board. Build Environ. 2019;164:106339.

    Article  Google Scholar 

  12. Zhou Y, Bu RW, Yi L, Sun JH. Heat transfer mechanism of concurrent flame spread over rigid polyurethane foam: effect of ambient pressure and inclined angle. Int J Therm Sci. 2020;155:106403.

    Article  CAS  Google Scholar 

  13. Wu NJ, Niu FK, Lang WC, Yu JH, Fu GL. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mater Des. 2019;181:107929.

    Article  Google Scholar 

  14. Yao Y, Ma C, Shi YQ, Song L, Hu W. Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Mater Chem Phys. 2018;211:42–53.

    Article  Google Scholar 

  15. Wang F, Zhang P, Mou Y, Kang M, Liu M, Song L, Lu A, Rong J. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage. Polym Test. 2017;63:494–504.

    Article  CAS  Google Scholar 

  16. Huang XJ, Zhao J, Tang G, Zhang Y, Sun JH. Effects of altitude and inclination on the flame structure over the insulation material PS based on heat and mass transfer. Int J Heat Mass Transf. 2015;90:1046–55.

    Article  CAS  Google Scholar 

  17. Tang G, Wang X, Xing WY, Zhang P, Wang B, Hong N, Yang W, Hu Y, Song L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res. 2012;51:12009–16.

    Article  CAS  Google Scholar 

  18. Zhu YL, Shi YQ, Huang ZQ, Duan L, Tai Q, Hu Y. Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos Part A. 2017;99:149–56.

    Article  CAS  Google Scholar 

  19. Rao WH, Wang L, Wang H, Zhao HB, Wang YZ. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J Hazard Mater. 2018;360:651–60.

    Article  CAS  Google Scholar 

  20. Huang X, Chen G, Liu W, Zhang Y, Sun J. Thermal analysis of vertical upward flame spread and dripping behaviors of polystyrene foams at different altitudes. J Macromol Sci B. 2017;56(8):517–31.

    Article  CAS  Google Scholar 

  21. Isitman N, Dogan M, Bayramli E, Kaynak C. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym Degrad Stab. 2012;97:1285–96.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 51206002 and 51806001), the Natural Science Foundation of Anhui Province (No. 1608085QE113) and China Postdoctoral Science Foundation (No. 2018M640536). The authors gratefully acknowledge these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjie Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, C., Gao, J. et al. Research on two sides horizontal flame spread over rigid polyurethane with different flame retardants. J Therm Anal Calorim 146, 2141–2150 (2021). https://doi.org/10.1007/s10973-020-10461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10461-z

Keywords

Navigation