Skip to main content

Thermal rearrangements during liquid–vapor phase pyrolysis polycondensation of polysilane to high-functional polycarbosilane: spectral and thermal studies

Abstract

Thermally induced Kumada rearrangement of –Si–Si– linear chains in polysilanes to –Si–C– chain was conducted in the liquid–vapor phase, followed by isothermal treatments at 410, 460 °C and pressure of 15 kgf cm−2 leading to polycarbosilane(PCS) with higher silane (–Si–H) content in the range 0.46–0.58 mass%. Molecular and thermal changes during the oligomer to polymer transformation were investigated, applying spectral and thermal techniques. FTIR, Raman, and 1H, 13C, and 29Si-NMR analytical results established the chemical structural formula, –Si–Si–, –Si–C–, –Si–H bonding networks, and evolution of –Si–H functionality in as-synthesized polycarbosilane during the thermal transformations. FTIR and 29Si-NMR studies followed the increase in silane content (–Si–H). Raman data revealed the formation and disappearance of –Si–Si– functional group as the transformation progresses. Average molecular mass increased proportionally with polymerization reaction time. Thermogravimetric studies at 1400 °C confirmed a polymer to ceramic conversion (ceramic yield) of as-synthesized PCS increased with the increase in mass average molecular mass and found to be as high as 88% mass. The formation of a high purity green β-SiC powder on heat treatment at 1500 °C confirmed the high molecular polycarbosilane.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Octavio F, Rajendra KB, Daisy N, Walter K, Gunter M. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status. Adv Eng Mater. 2014;16:621–36.

    Article  Google Scholar 

  2. Miele P, Bernard S, Cornu D. Toury B recent developments in polymer-derived ceramic fibers (PDCFs): preparation, properties, and applications—a review. Soft Mater. 2007;4:249–86.

    Article  Google Scholar 

  3. Emre Y, Mucahit S, Suat BB. Ceramic fibers. Fiber technology for fiber-reinforced composites. Cambridge: Woodhead Publishing; 2017.

    Google Scholar 

  4. Sakurai H. Development of organosilicon polymer. Tokyo: CMC Press; 1999.

    Google Scholar 

  5. Stone FG, Graham WA. Inorganic polymers. New York: Academic Press; 1962.

    Google Scholar 

  6. Ohnaka T. Industrial scale fabrication and application of polysilane, in development of organosilicon polymers. Tokyo: CMC; 1999.

    Google Scholar 

  7. Lackey WJ, Starr TL. Fiber-reinforced ceramic composites. Park Ridge: Noyes Publications; 1990. p. 439–44.

    Google Scholar 

  8. Kohyama A, Kotani M, Katoh Y, Nakayasu T, Sato M, Yamamura T, Okamura K. High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J Nucl Mater. 2000;283:565–9.

    Article  Google Scholar 

  9. Cheng X, Xie Z, Song Y, Xiao J, Wang Y. Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure. J Appl Polym Sci. 2006;99:1188–94.

    CAS  Article  Google Scholar 

  10. Kim Y, Geun Shin D, Kim HR, Han DY, Kang Y, Riu DH. Kumada rearrangement of polydimethylsilane using a catalytic process. Key Eng Mater. 2006;317:85–8.

    Article  Google Scholar 

  11. Chen J, He G, Liao Z, Zeng B, Ye J, Chen L, Xia H, Zhang L. Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement. J Appl Polym Sci. 2008;108:3114–21.

    CAS  Article  Google Scholar 

  12. Ishikawa T, Kajii S, Matsunaga K, Hogami T, Kohtoku Y, Nagasawa T. A tough, thermally conductive silicon carbide composite with high strength up to 1600 °C in air. Science. 1998;282:1295–7.

    CAS  Article  Google Scholar 

  13. Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T. High-strength alkali-resistant sintered SiC fiber stable to 2,200 °C. Nature. 1998;391:773–8.

    CAS  Article  Google Scholar 

  14. Yajima S, Hasegawa Y, Okamura K, Matsuzawa T. Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor. Nature. 1978;15:525–7.

    Article  Google Scholar 

  15. Birot M, Pillot JP, Dunogues J. Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. J Chem Rev. 1995;95:1443–77.

    CAS  Article  Google Scholar 

  16. Lach C, Müller P, Frey H, Mülhaupt R. Hyperbranched polycarbosilane macromonomers bearing oxazoline functionalities. Macromol Rapid Commun. 1997;18:253–60.

    CAS  Article  Google Scholar 

  17. Colombo P, Mera G, Riedel R, Sorarù GD. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc. 2010;93:1805–12.

    CAS  Google Scholar 

  18. Fritz G. Carbosilanes. Angew Chem Int Ed Engl. 1987;26:1111–32.

    Article  Google Scholar 

  19. Ishimoto K. Kinken monogatari-SiC Fiber, IMR news, vol. 61. Japan: Tohouku University; 2010. p. 9.

    Google Scholar 

  20. Fritz G. Formation and properties of carbosilanes. Angew Chem Int Ed Engl. 1967;6:677–83.

    CAS  Article  Google Scholar 

  21. Fritz G, Grobe J, Kummer D. Carbosilanes. Adv. Inorg Chem. 1965;7:349–418.

    CAS  Google Scholar 

  22. Yajima S. Japanese patent. H54-061299; 1977.

  23. Hong J, Cho KY, Shin DG, Kim SH, Riu DH. Structural evolution of SiC phase from polycarbosilane cured with iodine: NMR study. J Inorg Organomet Polym. 2018;28:2221–30.

    CAS  Article  Google Scholar 

  24. Ichikawa H. Polymer derived ceramics. Annu Rev Mater Res. 2016;46:335–56.

    CAS  Article  Google Scholar 

  25. Kim YH. United States patent no. US2009-0318655; 2009.

  26. Nguyen CN, Hong LY, Kim DY, Lee JY, Woo HG. Facile synthetic route of polycarbosilane as a SiC precursor with zeolite catalysts. J Ceram Soc Jpn. 2006;114:487–91.

    CAS  Article  Google Scholar 

  27. Riu DH, Kim YH, Shin DG, Kim HR. Characterization of SiC fiber derived from polycarbosilane. Ceram Trans. 2004;154:77–86.

    Google Scholar 

  28. Yajima S. Japanese patent, S57-026527; 1982.

  29. Shin DG, Riu DH, Kim HR, Kim Y, Jeong YK, Park HS, Kim HE. Fabrication of silicon carbide fiber and non-woven fabric from the polycarbosilane produced using a catalytic process. Key Eng Mater. 2005;287:91–5.

    CAS  Article  Google Scholar 

  30. Wang G, Song Y. Enhancing the yield of polycarbosilane synthesis via recycling of liquid by-product at atmospheric pressure. Ceram Int. 2018;44:6474–8.

    CAS  Article  Google Scholar 

  31. Xue F, Zhou K, Wu N, Luo H, Wang X, Zhou X, Yan Z, Abrahams I, Zhang D. Porous SiC ceramics with dendritic pore structures by freeze casting from cross-linked chemical polycarbosilane. Ceram Int. 2018;44:6293–9.

    CAS  Article  Google Scholar 

  32. Ji P, Pei X, Miao Y, He L, Huang Q. Effect of ultraviolet irradiation on the cross-linking process and ceramic yield of liquid hyperbranched polycarbosilane. Adv Appl Ceram. 2017;116:445–51.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of an in-house R&D program on ceramic polymer development under Grant No. M-8-109. Authors thank Director, CSIR-National Aerospace Laboratories, Head, and Dy. Head, Materials Science Division, CSIR-NAL, for their constant encouragement and support to complete the program. Authors are also thankful to Prof. Stephen Podzimek, University of Pardubice, the Czech Republic, for carrying out the molecular mass measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Santhana Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnan, G.S., Naveen, S. & Shahnawaz, M. Thermal rearrangements during liquid–vapor phase pyrolysis polycondensation of polysilane to high-functional polycarbosilane: spectral and thermal studies. J Therm Anal Calorim 147, 1251–1264 (2022). https://doi.org/10.1007/s10973-020-10459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10459-7

Keywords

  • Ceramic-yielding polymers
  • High molecular mass
  • Pressure pyrolysis polycondensation
  • Solvent fractionation