Skip to main content
Log in

Characterization and application of superhydrophobic and superoleophilic OTS-LDH/melamine sponge

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The n-octadecyltrichlorosilane (OTS) had been coated onto the layered double hydroxides (LDH), and the resultant composite of OTS-LDH was further loaded on the surface of melamine sponge by a soaking method to obtain the OTS-LDH/melamine sponge for efficient oil adsorption in this work. The surface chemical compositions of the OTS-LDH/sponge and its precursors were characterized by EDS, XPS, and FTIR. The results from EDS, XPS, and FTIR showed that the OTS had been successfully coated on LDH. The surface morphologies from SEM for the melamine sponge before and after modification illuminated that the surface skeleton of the OTS-LDH/sponge took a rough micro-nanostructure, and the surface had been loaded with the low surface energy material of OTS, which made the OTS-LDH/sponge display the superhydrophobic properties. The experiments of oil–water separation proved that the OTS-LDH/sponge took an excellent oil–water efficiency, and the modified sponge still took the better oil–water separation performance with an oil adsorption capacity of 13.7–21.1 times of the mass of the pristine sponge even after undergoing repeated extrusion for 60 times during the repeated cycle test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dosskey MG. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ Manag. 2001;28:577–98. https://doi.org/10.1007/s002670010245.

    Article  CAS  Google Scholar 

  2. Jamaly S, Giwa A, Hasan SW. Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J Environ Sci. 2015;37:15–30. https://doi.org/10.1016/j.jes.2015.04.011.

    Article  CAS  Google Scholar 

  3. Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaenic SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170(2–3):530–51. https://doi.org/10.1016/j.jhazmat.2009.05.044.

    Article  CAS  Google Scholar 

  4. Gupta RK, Dunderdale GJ, England MW, Hozumi A. Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A. 2017;5:16025–58. https://doi.org/10.1039/C7TA02070H.

    Article  CAS  Google Scholar 

  5. Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44:336–61. https://doi.org/10.1039/C4CS00220B.

    Article  PubMed  Google Scholar 

  6. Zhang C, Li P, Cao B. Fabrication of superhydrophobic-superoleophilic fabrics by an etching and dip-coating two-step method for oil-water separation. Ind Eng Chem Res. 2016;55(17):5030–5. https://doi.org/10.1021/acs.iecr.6b00206.

    Article  CAS  Google Scholar 

  7. Xue Z, Cao Y, Liu N, Feng L, Jiang L. Special wettable materials for oil/water separation. J Mater Chem A. 2014;2:2445–60. https://doi.org/10.1039/C3TA13397D.

    Article  CAS  Google Scholar 

  8. Yong J, Huo J, Chen F, Yang Q, Hou X. Oil/water separation based on natural materials with super-wettability: recent advances. Phys Chem Chem Phys. 2018;20:25140–63. https://doi.org/10.1039/C8CP04009E.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang S, Huang J, Chen Z, Yang S, Lai Y. Liquid mobility on superwettable surfaces for applications in energy and the environment. J Mater Chem A. 2019;7:38–63. https://doi.org/10.1039/C8TA09403A.

    Article  CAS  Google Scholar 

  10. Oh JH, Moon MW, Park CH. Effect of crystallinity on the recovery rate of superhydrophobicity in plasma-nanostructured polymers. RSC Adv. 2020;10:10939–48. https://doi.org/10.1039/D0RA00098A.

    Article  CAS  Google Scholar 

  11. Wang H, Hu X, Ke Z, Du CZ, Zheng L, Wang C, Yuan Z. Review: porous metal filters and membranes for oil-water separation. Nanoscale Res Lett. 2018;13:284. https://doi.org/10.1186/s11671-018-2693-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Elimelech M, Lin S. Environmental applications of interfacial materials with special wettability. Environ Sci Technol. 2016;50(5):2132–50. https://doi.org/10.1021/acs.est.5b04351.

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Li B, Dong J, Zhang J. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J Mater Chem A. 2016;4:13677–725. https://doi.org/10.1039/C6TA05441B.

    Article  CAS  Google Scholar 

  14. Giacomello A, Meloni S, Chinappi M, Casciola CM. Cassie-Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir. 2012;28(29):10764–72. https://doi.org/10.1021/la3018453.

    Article  CAS  PubMed  Google Scholar 

  15. Erbil HY, Cansoy CE. Range of applicability of the Wenzel and Cassie–Baxter equations for superhydrophobic surfaces. Langmuir. 2009;25(24):14135–45. https://doi.org/10.1021/la902098a.

    Article  CAS  PubMed  Google Scholar 

  16. Jiaqiang E, Jin Y, Deng Y, Zuo W, Zhao X, Han D, Peng Q, Zhang Z. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: a review. Adv Mater Interf. 2018;5:1701052. https://doi.org/10.1002/admi.201701052.

    Article  Google Scholar 

  17. Verplanck N, Coffinier Y, Thomy V, Boukherroub R. Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett. 2007;2:577. https://doi.org/10.1007/s11671-007-9102-4.

    Article  CAS  PubMed Central  Google Scholar 

  18. Feng Y, Li SH, Li Y, Li HJ, Zhang L, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB. Super-hydrophobic surfaces: from natural to artificial. Adv Mater. 2003;14(24):1857–60. https://doi.org/10.1002/adma.200290020.

    Article  Google Scholar 

  19. Feng Y, Yao J. Design of melamine sponge-based three-dimensional porous materials toward applications. Ind Eng Chem Res. 2018;57(22):7322–30. https://doi.org/10.1021/acs.iecr.8b01232.

    Article  CAS  Google Scholar 

  20. Lei Z, Deng Y, Wang C. Ambient-temperature fabrication of melamine-based sponges coated with hydrophobic lignin shells by surface dip adsorbing for oil/ water separation. RSC Adv. 2016;6:106928–34. https://doi.org/10.1039/C6RA18329H.

    Article  CAS  Google Scholar 

  21. Barati Darbanda G, Aliofkhazraeia M, Khorsandb S, Sokhanvara S, Kaboli A. Science and engineering of euperhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arab J Chem. 2020;13(1):1763–802. https://doi.org/10.1016/j.arabjc.2018.01.013.

    Article  CAS  Google Scholar 

  22. Zhu X, Zhang Z, Ge B, Men X, Zhou X, Xue Q. A versatile approach to produce superhydrophobic materials used for oil–water separation. J Colloid Interf Sci. 2014;432:105–8. https://doi.org/10.1016/j.jcis.2014.06.056.

    Article  CAS  Google Scholar 

  23. Wang C, Yao T, Wu J, Ma C, Fan Z, Wang S, Cheng Y, Lin Q, Yang B. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl Mater Interf. 2019;1(11):2613–7. https://doi.org/10.1021/am900520z.

    Article  CAS  Google Scholar 

  24. Qiu S, Li Y, Li G, Zhang Z, Li Y, Wu T. Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustain Chem Eng. 2019;7(5):5560–7. https://doi.org/10.1021/acssuschemeng.9b00098.

    Article  CAS  Google Scholar 

  25. Dong X, Cui M, Huang R, Su R, Qi W, He Z. Polydopamine-assisted surface coating of MIL-53 and dodecanethiol on a melamine sponge for oil–water separation. Langmuir. 2020;36(5):1212–20. https://doi.org/10.1021/acs.langmuir.9b02987.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Z, Zhang C, Zeng G, Tan X, Wang H, Huang D, Yang K, Wei J, Ma C, Nie K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review. J Mater Chem A. 2020;8:4141–73. https://doi.org/10.1039/C9TA13522G.

    Article  CAS  Google Scholar 

  27. Gu Z, Atherton JJ, Xu ZP. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications. Chem Commun. 2015;51:3024–36. https://doi.org/10.1039/C4CC07715F.

    Article  CAS  Google Scholar 

  28. Tongamp W, Zhang Q, Saito F. Preparation of meixnerite (Mg–Al–OH) type layered double hydroxide by a mechanochemical route. J Mater Sci. 2007;42:9210–5. https://doi.org/10.1007/s10853-007-1866-5.

    Article  CAS  Google Scholar 

  29. Ke Q, Jin Y, Jiang P, Yu J. Oil/water separation performances of superhydrophobic and superoleophilic sponges. Langmuir. 2014;30(44):13137–42. https://doi.org/10.1021/la502521c.

    Article  CAS  PubMed  Google Scholar 

  30. Lv L, He J, Wei M, Evansa DG, Duan X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Res. 2006;40:735–43. https://doi.org/10.1016/j.watres.2005.11.043.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports of the professorial and doctoral scientific research foundation of Huizhou University (Grant No. 2018JB001) and the Natural Science Foundation of Guangdong Province (Grant No. 2017A030313080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Lin or Chen Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Zheng, C., Li, X. et al. Characterization and application of superhydrophobic and superoleophilic OTS-LDH/melamine sponge. J Therm Anal Calorim 147, 1031–1040 (2022). https://doi.org/10.1007/s10973-020-10456-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10456-w

Keywords

Navigation