Skip to main content
Log in

Dilatometric analysis of sintering lithium-titanium-zinc ferrite with ZrO2 additive

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sintering of multicomponent lithium ferrite of the chemical composition Li0.65Fe1.6Ti0.5Zn0.2Mn0.05O4 with the addition of ZrO2 was studied using dilatometric and kinetic analyses. The LiTiZn ferrite was synthesized by solid state reaction from Fe2O3, Li2CO3, TiO2, ZnO, and MnO2 high-purity powders, and then doped with zirconia nanopowder (0.5, 1 and 2 mass%). The ZrO2 was prepared by sol–gel technique. It was found that small concentration of ZrO2 additives (up to 1 mass%) increase the bulk density of ferrite. An increase in the concentration of ZrO2 additive to 2 mass% causes deterioration of ferrite compaction. Shrinkage curves were used to perform the kinetic analysis based on mathematical modeling to find the parameters of ferrite sintering. The kinetic analysis showed that the diffusion models are suitable for mathematical determination of the kinetic patterns of ferrite sintering. The estimated values of the kinetic parameters can be used to improve the technological process of sintering of multicomponent ferrite materials doped with zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Inoue A, Kong F. Soft magnetic materials. In: Reference module in materials science and materials engineering. Elsevier; 2020. https://doi.org/10.1016/B978-0-12-803581-8.11725-4.

  2. Mattei JL, Chevalier A, Laur V. Ferrite ceramics at microwave frequencies: applications and characterization. In: Reference module in materials science and materials engineering. Elsevier; 2020. https://doi.org/10.1016/B978-0-12-803581-8.11765-5.

  3. Teixeira SS, Amaral F, Graça MPF, Costa LC. Comparison of lithium ferrite powders prepared by sol–gel and solid state reaction methods. Mater Sci Eng B. 2020;255:114529.

    CAS  Google Scholar 

  4. Darwish MA, Saafan SA, El- Kony D, Salahuddin NA. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li–Ni–Zn ferrite composites. J Magn Magn Mater. 2015;385:99–106.

    CAS  Google Scholar 

  5. Lysenko EN, Malyshev AV, Vlasov VA, Nikolaev EV, Surzhikov AP. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J Therm Anal Calorim. 2018;134:127–33.

    CAS  Google Scholar 

  6. Kotnala RK, Shah J, Singh B, Kishan H, Singh S, Dhawan SK, Sengupta A. Humidity response of Li-substituted magnesium ferrite. Sens Actuat B. 2008;129:909–14.

    CAS  Google Scholar 

  7. Surzhikov AP, Pritulov AM, Lysenko EN, Sokolovskiy AN, Vlasov VA, Vasendina EA. Calorimetric investigation of radiation-thermal synthesised lithium pentaferrite. J Therm Anal Calorim. 2010;101:11–3.

    CAS  Google Scholar 

  8. Sharif M, Jacob J, Javed M, Manzoor A, Mahmood K, Khan MA. Impact of Co and Mn substitution on structural and dielectric properties of lithium soft ferrites. Phys B. 2019;567:45–50.

    CAS  Google Scholar 

  9. Xu F, Shi X, Liao Y, Li J, Hu J. Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramics. Ceram Int. 2020;46:14669–73.

    CAS  Google Scholar 

  10. Xie F, Chen Y, Bai M, Wang P. Co-substituted LiZnTiBi ferrite with equivalent permeability and permittivity for high-frequency miniaturized antenna application. Ceram Int. 2019;45:17915–9.

    CAS  Google Scholar 

  11. Abu-Elsaad NI, Mazen SA, Salem HM. The effect of zinc substitution and heat treatment on microstructural and magnetic properties of Li ferrite nanoparticles. J Alloys Compd. 2020;835:155227.

    CAS  Google Scholar 

  12. Gao Y, Wang Z, Shi R, Pei J, Zhang H, Zhou X. Electromagnetic and microwave absorption properties of Ti doped Li–Zn ferrites. J Alloys Compd. 2019;805:934–41.

    CAS  Google Scholar 

  13. Lysenko EN, Surzhikov AP, Vlasov VA, Nikolaev EV, Malyshev AV, Bryazgin AA, Korobeynikov MV, Mikhailenko MA. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating. Nucl Instr Methods Phys Res Sect B. 2017;392:1–7.

    CAS  Google Scholar 

  14. Grusková A, Jančárik V, Sláma J, Dosoudil R. Effect of Zn–Ti substitution on electromagnetic properties of Li ferrites. J Magn Magn Mater. 2006;304:e762–5.

    Google Scholar 

  15. Xu F, Shi X, Yang Y, Li J, Liao Y, Hu J. Enhanced magnetic properties of low temperature sintered LiZnTi ferrite ceramic synthesized through adjusting microstructure. J Alloys Compd. 2020;827:154338.

    CAS  Google Scholar 

  16. Xie F, Jia L, Xu F, Li J, Gan G, Zhang H. Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li.42Zn.27Ti.11Mn.1Fe2.1O4 ferrite ceramics modified with Bi2O3–ZnO–B2O3 glass additive. Ceram Int. 2018;44:13122–8.

    CAS  Google Scholar 

  17. Manonmani M, Jaikumar V, Gokul Raj S, Ramesh Kumar G. Crystallization, non-isothermal kinetics and structural analysis of nanocrystalline multiferroic bismuth ferrite (BiFeO3) synthesized by combustion method. J Therm Anal Calorim. 2019;138:185–93.

    CAS  Google Scholar 

  18. Dippong T, Cadar O, Levei E, Borodi G, Barbu-Tudoran L. Thermal behavior and effect of SiO2 and PVA-SiO2 matrix on formation of Ni–Zn ferrite nanoparticles. J Therm Anal Calorim. 2019;138:3845–55.

    CAS  Google Scholar 

  19. Jalaiah K, Chandra Mouli K, Subba Rao PSV, Sreedhar B. Structural and dielectric properties of Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4. J Magn Magn Mater. 2017;432:418–24. https://doi.org/10.1016/j.jmmm.2017.02.013.

    Article  CAS  Google Scholar 

  20. Almessiere MA, Slimani Y, Sertkol M, Nawaz M, Baykal A, Ercan I. The impact of Zr substituted Sr hexaferrite: investigation on structure, optic and magnetic properties. Res Phys. 2019;13:102244.

    Google Scholar 

  21. Jalaiah K, Vijaya Babu K, Chandra Mouli K, Subba Rao PSV. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 using sol–gel auto-combustion method. Phys B Condens Matter. 2018;534:125–33.

    CAS  Google Scholar 

  22. Kavitha S, Kurian M. Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J Alloys Compd. 2019;799:147–59.

    CAS  Google Scholar 

  23. El-Shater RE, El Shimy H, Assar ST. Investigation of physical properties of synthesized Zr doped Ni–Zn ferrites. Mater Chem Phys. 2020;247:122758.

    CAS  Google Scholar 

  24. Li LZ, Zhong XX, Wang R, Tu XQ. Structural, magnetic and electrical properties of Zr-substitued NiZnCo ferrite nanopowders. J Magn Magn Mater. 2017;435:58–63.

    CAS  Google Scholar 

  25. Hua Z, Yao G, Ma J, Zhang M. Fabrication and mechanical properties of short ZrO2 fiber reinforced NiFe2O4 matrix composites. Ceram Int. 2013;39:3699–708.

    CAS  Google Scholar 

  26. Sun B, Chen F, Xie D, Yang W, Shen H. A large domain wall pinning effect on the magnetic properties of ZrO2 added Mn-Zn ferrites. Ceram Int. 2014;40:6351–4.

    CAS  Google Scholar 

  27. Wang SF, Yang HC, Hsu YF, Hsieh CK. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites. J Magn Magn Mater. 2015;374:381–7.

    CAS  Google Scholar 

  28. Long X, Liu Y, Yao G, Du J, Zhang X, Cheng J, Hua Z. Microstructure and mechanical properties of NiFe2O4 ceramics reinforced with ZrO2 particles with different sintering temperatures. J Alloys Compd. 2013;551:444–50.

    CAS  Google Scholar 

  29. Lysenko EN, Ghyngazov SA, Surzhikov AP, Nikolaeva SA, Vlasov VA. The influence of ZrO2 additive on sintering and microstructure of lithium and lithium-titanium-zinc ferrites. Ceram Int. 2019;45:2736–41.

    CAS  Google Scholar 

  30. Lysenko EN, Nikolaeva SA, Surzhikov AP, Ghyngazov SA, Plotnikova IV, Vlasov VA, Zhuravlev VA, Zhuravleva EV. Electrical and magnetic properties of ZrO2-doped lithium-titanium-zinc ferrite ceramics. Ceram Int. 2019;45:20148–54.

    CAS  Google Scholar 

  31. Dippong T, Levei EA, Cadar O, Goga F, Borodi G, Barbu-Tudoran L. Thermal behavior of CoxFe3−xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim. 2017;128:39–52.

    CAS  Google Scholar 

  32. Ştefănescu M, Dippong T, Stoia M, Ştefănescu O. Study on the obtaining of cobalt oxides by thermal decomposition of some complex combinations, undispersed and dispersed in SiO2 matrix. J Therm Anal Calorim. 2008;94:389–93.

    Google Scholar 

  33. Dippong T, Levei EA, Cadar O, Goga F, Toloman D, Borodi G. Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J Therm Anal Calorim. 2019;136:1587–96.

    CAS  Google Scholar 

  34. Surzhikov AP, Ghyngazov SA, Frangulyan TS, Vasil’ev IP, Chernyavskii AV. Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis. J Therm Anal Calorim. 2017;128:787–94.

    CAS  Google Scholar 

  35. Malyshev AV, Petrova AB, Surzhikov AP, Sokolovskiy AN. Effect of sintering regimes on the microstructure and magnetic properties of LiTiZn ferrite ceramics. Ceram Int. 2019;45:2719–24.

    CAS  Google Scholar 

  36. Opfermann J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.

    CAS  Google Scholar 

  37. Ondro T, Húlan T, Al-Shantir O, Csáki Š, Václavů T, Trník A. Kinetic analysis of the formation of high-temperature phases in an illite-based ceramic body using thermodilatometry. J Therm Anal Calorim. 2019;138:2289–94.

    CAS  Google Scholar 

  38. Brown ME, Dollimore D, Gallway AK. Reaction in solid state. Comprehensive chemical kinetics. Amsterdam: Elsevier; 1980.

    Google Scholar 

  39. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    CAS  Google Scholar 

  40. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Google Scholar 

  41. Teo MLS, Kong LB, Li ZW, Lin GQ, Gan YB. Development of magneto-dielectric materials based on Li-ferrite ceramics I. Densification behavior and microstructure development. J Alloys Compd. 2008;459:557–66.

    CAS  Google Scholar 

  42. Thakur P, Chahar D, Taneja S, Bhalla N, Thakur A. A review on MnZn ferrites: synthesis, characterization and applications. Ceram Int. 2020;46:15740–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Liang Y, Peng N, Peng B. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2019;136:2157–64.

    CAS  Google Scholar 

  44. Konvička T, Mošner P, Šolc Z. Investigation of the non-isothermal kinetic of the formation of ZnFe2O4 and ZnCr2O4. J Therm Anal Calorim. 2000;60:629–40.

    Google Scholar 

Download references

Acknowledgements

The research was supported by RFBR Grant (Project No. 20-07-00662). The experiments on dilatometric analysis were funded from Tomsk Polytechnic University Competitiveness Enhancement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Lysenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, S.A., Lysenko, E.N., Nikolaev, E.V. et al. Dilatometric analysis of sintering lithium-titanium-zinc ferrite with ZrO2 additive. J Therm Anal Calorim 147, 1091–1096 (2022). https://doi.org/10.1007/s10973-020-10416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10416-4

Keywords

Navigation