Skip to main content
Log in

Rice husk-extracted silica reinforced graphite/aluminium matrix hybrid composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silica plays an important role in aluminium-based materials. However, role of silica in aluminium matrix composite is not clear so far. In the present study, pure silica was successfully extracted from rice husk by thermal and chemical treatments. The extracted silica had undergone FESEM, FTIR, and XRD for characterizing the purity of silica particles. The results showed that the obtained silica particles were highly pure. The rice husk-extracted pure silica was used as reinforcement in graphite/aluminium matrix hybrid composites. Composites were made using powder metallurgy process followed by sintering. Reinforcements of silica and graphite in aluminium matrix composites were done at different compositions to control the hardness in order to improve machinability. The aluminium matrix hybrid composites had shown excellent physical, mechanical, and thermal properties in terms of surface strength along with light mass as well as controlled thermal conductivity. The hardness of the hybrid composites had increased significantly compared to the single phase aluminium and also was controlled by the combined effect of added silica nanoparticle and graphite flake as reinforcements. Beside mechanical properties, these hybrid composites showed significantly desired thermal properties, particularly lower thermal expansion than that of pristine aluminium. Hence, the newly developed rice husk-extracted pure silica reinforced graphite/aluminium matrix hybrid composites can be used as potential materials for various advanced applications including microelectronic devices, engine piston, and automobile components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater. 2018;7(4):1700831.

    Google Scholar 

  2. Croissant JG, Brinker CJ. Biodegradable silica-based nanoparticles: dissolution kinetics and selective bond cleavage. In: Tamanoi F, editor. The enzymes, vol. 43. New York: Academic Press; 2018. p. 181–214.

    Google Scholar 

  3. Nakamura M. Organosilica nanoparticles and medical imaging. In: Tamanoi F, editor. Enzymes, vol. 44. New York: Academic Press; 2018. p. 137–73.

    Google Scholar 

  4. Cholkar K, Hirani ND, Natarajan C. Nanotechnology-based medical and biomedical imaging for diagnostics. In: Mitra AK, Cholkar K, Mandal A, editors. Emerging nanotechnologies for diagnostics, drug delivery and medical devices 2017. pp. 355–374.

  5. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int. 2015;41(1):275–81.

    CAS  Google Scholar 

  6. Ryan JG, Theis TN. Interconnects. In: Buschow KJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, editors. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2001. p. 4128.

    Google Scholar 

  7. Dadabhai F, Gaspari F, Zukotynski S, Bland C. Reduction of silicon dioxide by aluminum in metal–oxide–semiconductor structures. J Appl Phys. 1996;80(11):6505–9.

    CAS  Google Scholar 

  8. Sangha SP, Jacobson DM, Ogilvy AJ, Azema M, Junai AA, Botter E. Novel aluminium-silicon alloys for electronics packaging. Eng Sci Educ J. 1997;6(5):195–201.

    Google Scholar 

  9. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev. 2013;65(5):689–702.

    CAS  PubMed  Google Scholar 

  10. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. NanomedNanotechnol Biol Med. 2015;11(2):313–27.

    CAS  Google Scholar 

  11. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng, A. 2000;280(1):102–7.

    Google Scholar 

  12. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Design (1980–2015). 2014;56:862–71.

    CAS  Google Scholar 

  13. Miller WS, Zhuang L, Bottema J, Wittebrood A, De Smet P, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng, A. 2000;280(1):37–49.

    Google Scholar 

  14. Yang HS, Kim DJ, Kim HJ. Rice straw–wood particle composite for sound absorbing wooden construction materials. Biores Technol. 2003;86(2):117–21.

    CAS  Google Scholar 

  15. Tham LM, Gupta M, Cheng L. Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater. 2001;49(16):3243–53.

    CAS  Google Scholar 

  16. Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J Mater Process Technol. 2005;161(3):381–7.

    CAS  Google Scholar 

  17. Zuhailawati H, Samayamutthirian P. Fabrication of low cost of aluminium, matrix composite reinforced with silica sand. J Phys Sci. 2007;18(1):47–55.

    CAS  Google Scholar 

  18. Saravanan S, Inokawa H, Tomoshige R, Raghukandan K. Effect of silicon carbide particles in microstructure and mechanical properties of dissimilar aluminium explosive cladding. J Manuf Process. 2019;47:32–40.

    Google Scholar 

  19. Sulaiman S, Marjom Z, Ismail MI, Ariffin MK, Ashrafi N. Effect of modifier on mechanical properties of aluminium silicon carbide (Al-SiC) composites. Proc Eng. 2017;184:773–7.

    CAS  Google Scholar 

  20. Suresha S, Sridhara BK. Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites. Mater Des. 2010;31(9):4470–7.

    CAS  Google Scholar 

  21. Tiwari S, Pradhan MK. Effect of rice husk ash on properties of aluminium alloys: a review. Mater Today Proc. 2017;4(2):486–95.

    Google Scholar 

  22. Stephenson T, Le Petitcorps Y, Quenisset JM. Silica-aluminium alloy composites: a kinetic study. Mater Sci Eng, A. 1991;135:101–4.

    Google Scholar 

  23. Mishra P, Mishra P, Rana RS. Effect of rice husk ash reinforcements on mechanical properties of aluminium alloy (lm6) matrix composites. Mater Today Proc. 2018;5(2):6018–22.

    CAS  Google Scholar 

  24. Kordatos K, Gavela S, Ntziouni A, Pistiolas KN, Kyritsi A, Kasselouri-Rigopoulou V. Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater. 2008;115(1–2):189–96.

    CAS  Google Scholar 

  25. Yuvakkumar R, Elango V, Rajendran V, Kannan N. High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci. 2014;9(3):272–81.

    CAS  Google Scholar 

  26. Sidharta I, Haryono JA, Devara AA. Properties of aluminum graphite composite prepared by stir casting. InAIP Conf Proc. 2018;1983(1):050019.

    Google Scholar 

  27. Suresha S, Sridhara BK. Friction characteristics of aluminium silicon carbide graphite hybrid composites. Mater Des. 2012;34:576–83.

    CAS  Google Scholar 

  28. Maruyama B, Ohuchi FS, Rabenberg L. Catalytic carbide formation at aluminium-carbon interfaces. J Mater Sci Lett. 1990;9(7):864–6.

    CAS  Google Scholar 

  29. Novak B, Tschöpe K, Ratvik AP, Grande T. Fundamentals of aluminium carbide formation. Light Met. 2012;2012:1343–8.

    Google Scholar 

  30. Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.

    CAS  Google Scholar 

  31. Jerina L, Medved J, Godec M, Vončina M. Influence of the specific surface area of secondary material on the solidification process and microstructure of aluminium alloy AA7075. J Therm Anal Calorim. 2018;134(1):455–62.

    CAS  Google Scholar 

  32. Chakraverty A, Kaleemullah S. Conversion of rice husk into amorphous silica and combustible gas. Energy Convers Manag. 1991;32(6):565–70.

    CAS  Google Scholar 

  33. Karthikeyan P, Pramanik S. Effect of vibration of moulding on the gravity casted specimen during pouring of molten aluminium in metallic mould. IOP Conf Ser: Mater Sci Eng. 2018;402(1):012037.

    Google Scholar 

  34. Pramanik S, Agarwala P, Vasudevan K, Sarkar K. Human-lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact. J Appl Polym Sci. 2020;137(30):48913.

    CAS  Google Scholar 

  35. Karthikeyan P, Pramanik S. Thermal fatigue cycle shock effects on physical and structural properties of H13 tool steels before and after heat treatments. IOP Conf Ser: Mater Sci Eng. 2020;912(5):052014.

    CAS  Google Scholar 

  36. Moradi A, Pramanik S, Ataollahi F, Kamarul T, Pingguan-Murphy B. Archimedes revisited: computer assisted micro-volumetric modification of the liquid displacement method for porosity measurement of highly porous light materials. Anal Methods. 2014;6(12):4396–401.

    CAS  Google Scholar 

  37. Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP, Khalil AA, Kamarul T, Pingguan-Murphy B. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J Biomed Mater Res, Part A. 2016;104(1):245–56.

    Google Scholar 

  38. Pramanik S, Ataollahi F, Pingguan-Murphy B, Oshkour AA, Osman NA. In vitro study of surface modified poly (ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci Rep. 2015;5:9806.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen XQ, Niu H, Li D, Li Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19(9):1275–81.

    CAS  Google Scholar 

  40. Oshkour AA, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Osman NA. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J Mech Behav Biomed Mater. 2015;49:321–31.

    Google Scholar 

  41. Carruthers P. Theory of thermal conductivity of solids at low temperatures. Rev Mod Phys. 1961;33(1):92.

    CAS  Google Scholar 

  42. Childs BG. The thermal expansion of anisotropic metals. Rev Mod Phys. 1953;25(3):665.

    CAS  Google Scholar 

  43. Matyunin VM, Abusaif N, Marchenkov AY. Influence of grains and grain boundaries on hardness values. J Phys: Conf Ser. 2019;1399(4):044002.

    CAS  Google Scholar 

  44. Tahari MNA, Yarmo MA. Adsorption of CO2 on silica dioxide catalyst impregnated with various alkylamine. AIP Conf Proc. 2014;1614(1):334–41.

    Google Scholar 

  45. Galhotra P. Carbon dioxide adsorption on nanomaterials, Ph.D. thesis, University of Iowa. 2010. https://doi.org/10.17077/etd.detbvuv9.

  46. Han X, Zhao J, Liu S, Yuan Y. Flame retardancy mechanism of poly (butylene terephthalate)/aluminum diethylphosphinate composites with an epoxy-functional polysiloxane. RSC Adv. 2014;4(32):16551–60.

    CAS  Google Scholar 

  47. Shen Y-L, Chawla N. On the correlation between hardness and tensile strength in particle reinforced metal matrix composites. Mater Sci Eng, A. 2001;297(1–2):44–7.

    Google Scholar 

  48. Khan M, Ud-Din R, Wadood A, Husain SW, Akhtar S, Aune RE. Physical and mechanical properties of graphene nanoplatelet-reinforced Al6061-T6 composites processed by spark plasma sintering. JOM. 2020;72:1–10.

    Google Scholar 

  49. Al-Fadhalah K, Asi F. Aging behavior of aluminum alloy 6082 subjected to friction stir processing. Crystals. 2018;8(9):337.

    Google Scholar 

  50. Chamroune N, Mereib D, Delange F, Caillault N, Lu Y, Grosseau-Poussard JL, Silvain JF. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites. J Mater Sci. 2018;53(11):8180–92.

    CAS  Google Scholar 

  51. Kaschnitz E, Funk W, Pabel T. Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the aluminium alloy Al–7Si–0.3 Mg at elevated temperature. High Temp Press. 2014;43:175–91.

    CAS  Google Scholar 

  52. Solórzano E, Reglero JA, Rodríguez-Pérez MA, Lehmhus D, Wichmann M, De Saja JA. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf. 2008;51(25–26):6259–67.

    Google Scholar 

  53. Woodcraft AL. Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range. Cryogenics. 2005;45(6):421–31.

    CAS  Google Scholar 

  54. Rodríguez-Pérez MA, Reglero JA, Lehmhus D, Wichmann M, De Saja JA, Fernández A. The transient plane source technique (TPS) to measure thermal conductivity and its potential as a tool to detect in-homogeneities in metal foams. In: Smolenice C, S, editors. International Conference on Advanced Metallic Materials. 2003;Nov 5. pp 253–257.

  55. Kang S-H, Han JJ, Hwang W-T, Lee S-M, Kim H-K. Failure analysis of die casting pins for an aluminum engine block. Eng Fail Anal. 2019;104:690–703.

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge Metalography and Foundry Laboratories, Department of Mechanical Engineering and Nanotechnology Research Centre, SRM Institute of Science and Technology for accessing their research facilities such as syntheses and XRD as well as FTIR, respectively.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Authors S.S., A.G., and A.J.M. performed the experiments having equal contribution. S.P. planed and supervised the project, and provided all the facilities. S.S., A.G. and S.P. wrote the manuscript. All authors interpreted the data and reviewed the entire manuscript.

Corresponding author

Correspondence to Sumit Pramanik.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Gupta, A., Mehta, A.J. et al. Rice husk-extracted silica reinforced graphite/aluminium matrix hybrid composite. J Therm Anal Calorim 147, 1157–1166 (2022). https://doi.org/10.1007/s10973-020-10404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10404-8

Keywords

Navigation