Skip to main content
Log in

Experimental investigation and thin-layer modelling of cassava slice drying

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors for cassava slice drying. Based on the experimental data, the activation energy for diffusion was calculated to be 39.37 kJ mol−1, characterizing the drying difficulty of the cassava slice drying. Ten thin-layer drying models, which were semi-theoretical models or empirical, were fitted to the drying data, and the correlation coefficient (R2), Chi-square (χ2), root mean square error and applicability were compared. It was concluded that two-term exponential model described the drying most satisfactorily, with good statistical analysis coefficients and simple functions of model parameters. The model parameters were determined as functions of temperature and slice thickness. Predictions of one case with two-term exponential model were compared with experimental data and the correlation coefficient was 0.99852, indicating good prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tunde-Akintunde TY. Mathematical modelling of thin layer sun and solar drying of cassava chips. Int J Food Eng. 2010;6(6):5. https://doi.org/10.2202/1556-3758.1809.

    Article  Google Scholar 

  2. Njie DN, Rumsey TR. Influence of process conditions on the drying rate of cassava chips in a solar simulator. Drying Technol. 1998;16(1–2):181–98. https://doi.org/10.1080/07373939808917398.

    Article  Google Scholar 

  3. Jia J, Li L. Production situation of Cassava in the World and China. Agri Eng. 2015;5:124-6 + 9.

  4. Nations FaAOotU. Data of Crops. 2020. http://www.fao.org/faostat/en/#data/QC/visualize.

  5. Akpinar EK. Determination of suitable thin layer drying curve model for some vegetables and fruits. J Food Eng. 2006;73(1):75–84. https://doi.org/10.1016/j.jfoodeng.2005.01.007.

    Article  Google Scholar 

  6. Erbay Z, Icier F. A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr. 2010;50(5):441–64. https://doi.org/10.1080/10408390802437063.

    Article  PubMed  Google Scholar 

  7. Dai J, Rao J, Wang D, Xie L, Xiao H, Liu Y, Gao Z. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves. Drying Technol. 2015;33(3):365–76. https://doi.org/10.1080/07373937.2014.954667.

    Article  CAS  Google Scholar 

  8. Maskan A, Kaya S, Maskan M. Hot air and sun drying of grape leather (Pestil). J Food Eng. 2002;54(1):81–8.

    Article  Google Scholar 

  9. Kayran S, Doymaz İ. Determination of drying kinetics and physicochemical characterization of apricot pomace in hot-air dryer. J Therm Anal Calorim. 2017;130(2):1163–70. https://doi.org/10.1007/s10973-017-6504-0.

    Article  CAS  Google Scholar 

  10. Doymaz İ. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf. 2010;47(3):277–85. https://doi.org/10.1007/s00231-010-0722-3.

    Article  Google Scholar 

  11. Kesavan S, Arjunan TV, Vijayan S. Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J Therm Anal Calorim. 2018;136(1):159–71. https://doi.org/10.1007/s10973-018-7747-0.

    Article  CAS  Google Scholar 

  12. Cai ZL, Ma XQ, Qing X, Yu ZS. Drying kinetics and characteristics of sewage sludge/rice straw mixture. Drying Technol. 2015;33(12):1500–9. https://doi.org/10.1080/07373937.2015.1021928.

    Article  Google Scholar 

  13. Xin YN, Zhang JW, Li B. Drying kinetics of tobacco strips at different air temperatures and relative humidities. J Therm Anal Calorim. 2018;132(2):1347–58. https://doi.org/10.1007/s10973-018-7005-5.

    Article  CAS  Google Scholar 

  14. Tekin ZH, Baslar M. The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. J Therm Anal Calorim. 2018;132(2):1131–43. https://doi.org/10.1007/s10973-018-6991-7.

    Article  CAS  Google Scholar 

  15. Anyanwu C, Oparaku OU, Onyegegbu SO, Egwuatu U, Edem NI, Egbuka K, Nwosu PN, Sharma VK. Experimental investigation of a photovoltaic-powered solar cassava dryer. Drying Technol. 2012;30(4):398–403. https://doi.org/10.1080/07373937.2011.644649.

    Article  CAS  Google Scholar 

  16. Pillai M. Thin layer drying kinetics, characteristics and modeling of plaster of paris. Chem Eng Res Des. 2013;91(6):1018–27. https://doi.org/10.1016/j.cherd.2013.01.005.

    Article  CAS  Google Scholar 

  17. Pan K. The cellular mechanism of sucrose phloem unloading in tuberous root of cassava (Manihot esculenta Crantz) 2012.

  18. de Lima A, Queiroz MR, Nebra SA. Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chem Eng J. 2002;86(1):85–93.

    Article  Google Scholar 

  19. Chin SK, Law CL, Supramaniam CV, Cheng PG. Thin-layer drying characteristics and quality evaluation of air-dried Ganoderma Tsugae Murrill. Drying Technol. 2009;27:975–84. https://doi.org/10.1080/07373930902904350.

    Article  CAS  Google Scholar 

  20. Miraei Ashtiani S-H, Salarikia A, Golzarian MR. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inf Process Agric. 2017;4(2):128–39. https://doi.org/10.1016/j.inpa.2017.03.001.

    Article  Google Scholar 

  21. Guo G-F, Li B, Liu C-X, Jin X, Wang Z-G, Ding M-Z, et al. Characterization of moisture mobility and diffusion in fresh tobacco leaves during drying by the TG–NMR analysis. J Therm Anal Calorim. 2018;135(4):2419–27. https://doi.org/10.1007/s10973-018-7312-x.

    Article  CAS  Google Scholar 

  22. Wang H, Lu T, Jiang P. Mathematical model and numerical simulation of biological porous medium during hot air drying. Trans Chin Soc Agric Eng. 2014;20:325–33. https://doi.org/10.3969/j.issn.1002-6819.2014.20.039.

    Article  Google Scholar 

  23. Srikiatden J, Roberts JS. Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. J Food Eng. 2008;84(4):516–25. https://doi.org/10.1016/j.jfoodeng.2007.06.009.

    Article  Google Scholar 

  24. Pardeshi IL, Arora S, Borker PA. Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technol. 2009;27(2):288–95. https://doi.org/10.1080/07373930802606451.

    Article  Google Scholar 

  25. Hossain MA, Bala BK. Thin-layer drying characteristics for green chilli. Drying Technol. 2002;20(2):489–505.

    Article  CAS  Google Scholar 

  26. Priyadarshi S, Ramakrishna C, Cheluvadasaiah R, Naidu MM. Effect of pretreatment and low-temperature low humidity drying on quality characteristics of coriander foliage. Flavour Fragrance J. 2019;35(2):139–48. https://doi.org/10.1002/ffj.3545.

    Article  CAS  Google Scholar 

  27. Süfer Ö, Palazoğlu TK. A study on hot-air drying of pomegranate. J Therm Anal Calorim. 2019;137(6):1981–90. https://doi.org/10.1007/s10973-019-08102-1.

    Article  CAS  Google Scholar 

  28. Karakaplan N, Goz E, Tosun E, Yuceer M. Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicata L. J Food Process Preserv. 2019;43(10):5. https://doi.org/10.1111/jfpp.14142.

    Article  CAS  Google Scholar 

  29. Sharma N. Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118(1):523–31. https://doi.org/10.1007/s10973-014-3949-2.

    Article  CAS  Google Scholar 

  30. Tunçkal C, Coşkun S, Doymaz İ, Ergun E. Determination of sliced pineapple drying characteristics in a closed loop heat pump assisted drying system. Int J Renew Energy Dev. 2018;7(1):5. https://doi.org/10.14710/ijred.7.1.35-41.

    Article  CAS  Google Scholar 

  31. Singh NJ, Pandey RK. Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food Bioprod Process. 2012;90(2):317–22. https://doi.org/10.1016/j.fbp.2011.06.006.

    Article  Google Scholar 

  32. Akpinar EK, Bicer Y, Yildiz C. Thin layer drying of red pepper. J Food Eng. 2003;59(1):99–104. https://doi.org/10.1016/s0260-8774(02)00425-9.

    Article  Google Scholar 

  33. Wang J, Xi YS. Drying characteristics and drying quality of carrot using a two-stage microwave process. J Food Eng. 2005;68(4):505–11. https://doi.org/10.1016/j.jfoodeng.2004.06.027.

    Article  Google Scholar 

  34. Moon JH, Pan C-H, Yoon WB. Drying characteristics and thermal degradation kinetics of hardness, anthocyanin content and colour in purple- and red-fleshed potato (Solanum tuberosum L.) during hot air drying. Int J Food Sci Technol. 2015;50(5):1255–67. https://doi.org/10.1111/ijfs.12740.

    Article  CAS  Google Scholar 

  35. Aviara NA, Ajibola OO. Thermodynamics of moisture sorption in melon seed and cassava. J Food Eng. 2002;55(2):107–13.

    Article  Google Scholar 

  36. Aprajeeta J, Gopirajah R, Anandharamakrishnan C. Shrinkage and porosity effects on heat and mass transfer during potato drying. J Food Eng. 2015;144:119–28. https://doi.org/10.1016/j.jfoodeng.2014.08.004.

    Article  Google Scholar 

  37. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Drying Technol. 1996;14(10):2225–53. https://doi.org/10.1080/07373939608917205.

    Article  CAS  Google Scholar 

  38. Mghazli S, Ouhammou M, Hidar N, Lahnine L, Idlimam A, Mahrouz M. Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renew Energy. 2017;108:303–10. https://doi.org/10.1016/j.renene.2017.02.022.

    Article  CAS  Google Scholar 

  39. Lertworasirikul S. Drying kinetics of semi-finished cassava crackers: a comparative study. LWT - Food Sci Technol. 2008;41(8):1360–71. https://doi.org/10.1016/j.lwt.2007.09.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0603901). The authors thank Hui Zhou from Tsinghua University for his help in manuscript revision.

Funding

This study was funded by Ministry of Science and Technology of the People’s Republic of China (Grant No. 2017YFB0603901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanguo Zhang or Qinghai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Yang, X., Chu, L. et al. Experimental investigation and thin-layer modelling of cassava slice drying. J Therm Anal Calorim 147, 1379–1387 (2022). https://doi.org/10.1007/s10973-020-10401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10401-x

Keywords

Navigation