Skip to main content
Log in

Study of pyrolysis kinetic of green corn husk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, it was suggested the use of green corn husk, which is a biomass from agro-industry, as an alternative source of energy through its pyrolysis. Green corn husk characterization was done through immediate and elemental analysis of its components: cellulose, hemicelluloses, and lignin. It was also measured its higher calorific value. The pyrolysis study of green corn husk was done by the isoconversion and the Master plots method. Thermogravimetric plots were obtained at heating rates of 5, 10, 15, and 20 °C min−1. The pyrolysis kinetics parameters were studied through the Flynn–Wall–Ozawa (FWO), Kissinger, and Friedman models. The Master plots method was used to determine the pyrolysis reaction order. The results of the reaction energy activation were found to be in the range 105.21–157.46 kJ mol−1 by the FWO method, 150.50 kJ mol−1 by the Kissinger method, and ranged 120.66–163.81 kJ mol−1 by the Friedman method. The Master plots method showed a three-way-transport diffusional kinetics for the biomass de-volatilization process. The higher calorific value found for green corn husk was 16.14 MJ kg−1. The simulation showed correlation between the experimental data and the proposed model for conversion values up to 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manić N, Janković B, Pijović M, et al. Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09307-5.

    Article  Google Scholar 

  2. Bhattacharjee N, Biswas AB. Pyrolysis of Ageratum conyzoides (goat weed). J Therm Anal Calorim. 2020;139:1515–36. https://doi.org/10.1007/s10973-019-08437-9.

    Article  CAS  Google Scholar 

  3. Zanatta ER, Reinehr TO, Awadallak JA, et al. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45. https://doi.org/10.1007/s10973-016-5378-x.

    Article  CAS  Google Scholar 

  4. Nigam PS, Pandey A. Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Berlin: Springer; 2009.

    Book  Google Scholar 

  5. Gokcol C, Dursun B, Alboyaci B, Sunan E. Importance of biomass energy as alternative to other sources in Turkey. Energy Policy. 2009;37:424–31. https://doi.org/10.1016/j.enpol.2008.09.057.

    Article  Google Scholar 

  6. Sharma A, Pareek V, Zhang D. Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev. 2015;50:1081–96. https://doi.org/10.1016/j.rser.2015.04.193.

    Article  CAS  Google Scholar 

  7. Jia C, Chen J, Liang J, et al. Pyrolysis characteristics and kinetic analysis of rice husk. J Therm Anal Calorim. 2020;139:577–87. https://doi.org/10.1007/s10973-019-08366-7.

    Article  CAS  Google Scholar 

  8. Conesa JA, Urueña A, Díez D. Corn stover thermal decomposition in pyrolytic and oxidant atmosphere. J Anal Appl Pyrolysis. 2014;106:132–7. https://doi.org/10.1016/j.jaap.2014.01.010.

    Article  CAS  Google Scholar 

  9. Honorato AC, Machado JM, Celante G, et al. Biossorção de azul de metileno utilizando resíduos agroindustriais. Rev Bras Eng Agrícola e Ambient. 2015;19:705–10. https://doi.org/10.1590/1807-1929/agriambi.v19n7p705-710.

    Article  Google Scholar 

  10. Zambrzycki GC, Vale AT, Dantas VFS. Potencial energético dos resíduos da cultura do milho (Zea mays). Evidência. 2013;13:153–64.

    Google Scholar 

  11. Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Amsterdam: Elsevier Inc; 2013.

    Google Scholar 

  12. Riegel I, Moura ABD, Morisso FDP, De Souza Mello F. Análise termogravimétrica da pirólise da acácia-negra (acacia mearnsii de wild.) cultivada no Rio Grande do Sul, Brasil. Rev Arvore. 2008;32:533–43. https://doi.org/10.1590/s0100-67622008000300014.

    Article  Google Scholar 

  13. Chong CT, Mong GR, Ng J-H, et al. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag. 2019;180:1260–7. https://doi.org/10.1016/j.enconman.2018.11.071.

    Article  CAS  Google Scholar 

  14. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  15. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4:323–8. https://doi.org/10.1002/pol.1966.110040504.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  17. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  18. Han J, Sun Y, Guo W, et al. Non-isothermal thermogravimetric analysis of pyrolysis kinetics of four oil shales using Sestak–Berggren method. J Therm Anal Calorim. 2019;135:2287–96. https://doi.org/10.1007/s10973-018-7392-7.

    Article  CAS  Google Scholar 

  19. Qiao Y, Wang B, Zong P, et al. Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: analytical TG-FTIR and Py-GC/MS study. Energy Convers Manag. 2019;199:111964. https://doi.org/10.1016/j.enconman.2019.111964.

    Article  CAS  Google Scholar 

  20. Vuppaladadiyam AK, Liu H, Zhao M, et al. Thermogravimetric and kinetic analysis to discern synergy during the co-pyrolysis of microalgae and swine manure digestate. Biotechnol Biofuels. 2019;12:170. https://doi.org/10.1186/s13068-019-1488-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Xu X, Li H, et al. Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell. Bioresour Technol. 2018;247:21–9. https://doi.org/10.1016/j.biortech.2017.09.008.

    Article  CAS  PubMed  Google Scholar 

  22. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Cham: Springer; 2015.

    Book  Google Scholar 

  23. Chen T, Ku X, Lin J, Ström H. Pyrolysis simulation of thermally thick biomass particles based on a multistep kinetic scheme. Energy Fuels. 2020;34:1940–57. https://doi.org/10.1021/acs.energyfuels.9b04174.

    Article  CAS  Google Scholar 

  24. Perry RH, Green DW, Maloney JO. Perry’s chemical engineers’ handbook. New York: Mc Graw-Hills; 1997.

    Google Scholar 

  25. Li S, Xu S, Liu S, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85:1201–11. https://doi.org/10.1016/j.fuproc.2003.11.043.

    Article  CAS  Google Scholar 

  26. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75. https://doi.org/10.1016/0040-6031(92)85193-Y.

    Article  CAS  Google Scholar 

  27. Apaydin-Varol E, Polat S, Putun A. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate—a TGA-FTIR study. Therm Sci. 2014;18:833–42. https://doi.org/10.2298/TSCI1403833A.

    Article  Google Scholar 

  28. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  29. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92. https://doi.org/10.1002/app.1961.070051506.

    Article  CAS  Google Scholar 

  30. Ceylan S. Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral master-plots method. Waste Manag Res. 2015;33:345–52. https://doi.org/10.1177/0734242X15574590.

    Article  CAS  PubMed  Google Scholar 

  31. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42. https://doi.org/10.1002/app.1962.070062406.

    Article  CAS  Google Scholar 

  32. Ali I, Naqvi SR, Bahadar A. Kinetic analysis of Botryococcus braunii pyrolysis using model-free and model fitting methods. Fuel. 2018;214:369–80. https://doi.org/10.1016/j.fuel.2017.11.046.

    Article  CAS  Google Scholar 

  33. Poletto M, Zattera AJ, Santana RMC. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol. 2012;126:7–12. https://doi.org/10.1016/j.biortech.2012.08.133.

    Article  CAS  PubMed  Google Scholar 

  34. da Silva Miranda MR, Veras CAG, Ghesti GF. Charcoal production from waste pequi seeds for heat and power generation. Waste Manag. 2020;103:177–86. https://doi.org/10.1016/j.wasman.2019.12.025.

    Article  CAS  Google Scholar 

  35. Kitani O, Hall CW. Biomass handbook. New York: Gordon and Breach Science Publishers; 1989.

    Google Scholar 

  36. Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel. 1997;76:431–4. https://doi.org/10.1016/S0016-2361(97)85520-2.

    Article  Google Scholar 

  37. Kumar JV, Pratt BC. Compositional analysis of some renewable biofuels. Am Lab. 1996;28(8):15–20.

    CAS  Google Scholar 

  38. Quirino WF, Teixeira Do Vale A, Ana, et al Poder Calorífico da Madeira E de Materiais Ligno-Celulósicos Publicado na Revista da Madeira no 89 abril 2005 pag 100–106.

  39. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46. https://doi.org/10.3144/expresspolymlett.2008.18.

    Article  CAS  Google Scholar 

  40. Bartocci P, Tschentscher R, Stensrød RE, et al. Kinetic analysis of digestate slow pyrolysis with the application of the master-plots method and independent parallel reactions scheme. Molecules. 2019;24:1657. https://doi.org/10.3390/molecules24091657.

    Article  CAS  PubMed Central  Google Scholar 

  41. Cai J, Wu W, Liu R, Huber GW. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15:1331. https://doi.org/10.1039/c3gc36958g.

    Article  CAS  Google Scholar 

  42. Trninić M, Wang L, Várhegyi G, et al. Kinetics of corncob pyrolysis. Energy Fuels. 2012;26:2005–13. https://doi.org/10.1021/ef3002668.

    Article  CAS  Google Scholar 

  43. Dhyani V, Bhaskar T. Kinetic analysis of biomass pyrolysis. In: Waste biorefinery. Elsevier; 2018. p. 39–83. https://doi.org/10.1016/B978-0-444-63992-9.00002-1

  44. Liu R, Yuan H. Kinetics of the low-temperature pyrolysis of walnut shell. Int J Glob Energy Issues. 2008;29:248. https://doi.org/10.1504/IJGEI.2008.018006.

    Article  CAS  Google Scholar 

  45. Wu Y, Dollimore D. Kinetic studies of thermal degradation of natural cellulosic materials. Thermochim Acta. 1998;324:49–57. https://doi.org/10.1016/S0040-6031(98)00522-X.

    Article  CAS  Google Scholar 

  46. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Olinek Reinehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinehr, T.O., Ohara, M.A., de Oliveira Santos, M.P. et al. Study of pyrolysis kinetic of green corn husk. J Therm Anal Calorim 143, 3181–3192 (2021). https://doi.org/10.1007/s10973-020-10345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10345-2

Keywords

Navigation