Skip to main content
Log in

Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three Fe–C–Cr and three Fe–C–Cr–Ni-based alloys containing carbon between 0.318 and 0.410 mass%, chromium and nickel between of 0.001 and 4.990 mass% were studied. Original temperatures of solidus, liquidus and peritectic transformation were determined and clarified for all six specific alloys. Phase transition temperatures were experimentally obtained using differential thermal analysis (DTA), and the start of melting of alloys was investigated using the high-temperature laser scanning confocal microscopy. Additionally, experimental data were compared and discussed with calculation results using SW IDS and Thermo-Calc operating with commercially available thermodynamic database TCFE8. The combination of both experimental methods contributed substantially to investigate more clearly the start of melting. Determination of solidus temperatures/incipient melting point temperatures on DTA curves is often challenging, and there are significant differences when compared with the determination of liquidus and peritectic transformation temperatures. HT-LSCM method brings an improvement in that regard because it can reveal thermal events which are hardly identified on DTA curves. The relation between homogeneity/inhomogeneity of investigated alloys and the initiation of their melting was observed depending mainly on the state of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Argandona G, Biezma MV, Berrueta JM, Berlanga C, Ruiz A. Detection of secondary phases in UNS S32760 superduplex stainless steel by destructive and non-destructive techniques. J Mater Eng Perform. 2016;25:5269–79.

    Article  CAS  Google Scholar 

  2. Thomas Paul V, Sudha C, Saroja S. Influence of alloy content and prior microstructure on evolution of secondary phases in weldments of 9Cr-reduced activation ferritic-martensitic steel. Metall Mater Trans A. 2015;46:3378–92.

    Article  CAS  Google Scholar 

  3. Vázquez-Gómez O, Gallegos-Pérez AI, López-Martínez E, Vergara-Hernández HJ, Barrera-Godínez JA. Criteria for the dilatometric analysis to determine the transformations kinetics during continuous heating. J Therm Anal Calorim. 2019;135:2985–93.

    Article  Google Scholar 

  4. Kolesnikov VI, Migal’ YF, Kolesnikov IV, Novikov ES. Compatibility of chemical elements at grain boundaries in steel. Doklady Phys Chem. 2015;464:194–7.

    Article  CAS  Google Scholar 

  5. Chaliampalias D, Vourlias G, Pavlidou E, Chrissafis K. Examination of the oxidation resistance of Cr–Mo–V tool steel by thermal analysis. J Therm Anal Calorim. 2012;108:677–84.

    Article  CAS  Google Scholar 

  6. Steiner Petrovič D, Pirnat M, Klančnik G, Mrvar P, Medved J. The effect of cooling rate on the solidification and microstructure evolution in duplex stainless steel: a DSC study. J Therm Anal Calorim. 2012;109:1185–91.

    Article  Google Scholar 

  7. Kargul T, Wielgosz E, Falkus J. Application of thermal analysis tests results in the numerical simulations of continuous casting process. Arch Metall Mater. 2015;60:221–5.

    Article  Google Scholar 

  8. Žaludová M, Smetana B, Zlá S, et al. Experimental study of Fe–C–O based system above 1,000 °C. J Therm Anal Calorim. 2013;112:465–71.

    Article  Google Scholar 

  9. Žaludová M, Smetana B, Zlá S, et al. Experimental study of Fe–C–O based system below 1000 °C. J Therm Anal Calorim. 2013;111:1203–10.

    Article  Google Scholar 

  10. Drozdová Ľ, Smetana B, Zlá S, et al. Study of phase transformation temperatures of alloys based on Fe–C–Cr in high-temperature area. J Therm Anal Calorim. 2018;133:41–8.

    Article  Google Scholar 

  11. Yamaguchi K, Ueda S. High temperature enthalpy measurement of SUS340 stainless steel. High Temp. Mater. Process. 2012;30:569–72.

    Google Scholar 

  12. Luo BC, Wang HP, Wei B. Specific heat, enthalpy, and density of undercooled liquid Fe–Si–Sn alloy. Philos Mag Lett. 2009;89:527–33.

    Article  CAS  Google Scholar 

  13. Fremunt P, Podrábský T. Structural steels. Brno: Akademické nakladatelství CERM; 1996.

    Google Scholar 

  14. Schaffnit P, Stallybrass C, Konrad J, Stein F, Weinberg M. A Scheil–Gulliver model dedicated to the solidification of steel. Calphad. 2015;48:184–8.

    Article  CAS  Google Scholar 

  15. Matsumiya T. Steelmaking technology for a sustainable society. Calphad. 2011;35:627–35.

    Article  CAS  Google Scholar 

  16. Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547–53.

    Article  CAS  Google Scholar 

  17. Venkata RR, Kalyankar VD. Parameters optimization of continuous casting process using teaching-learning-based optimization algorithm. In: Panigrahi BK, Das S, Suganthan PN, Nanda PK, editors. Swarm, evolutionary, and memetic computing. SEMCCO 2012. Lecture notes in computer science. Heidelberg: Springer; 2012. p. 540–7.

  18. Alves CLM, Rezende J, Senk D, Kundin J. Peritectic phase transformation in the Fe–Mn and Fe–C system utilizing simulations with phase-field method. J Mater Res Technol. 2019;8:233–42.

    Article  CAS  Google Scholar 

  19. Martiník O, Smetana B, Dobrovská J, Kalup A, Zlá S, Kawuloková M, Gryc K, Dostál P, Drozdová Ľ. Thermal analysis of medium-carbon steels. In: Proceedings paper, METAL 2016: 25th anniversary international conference on metallurgy and materials. p. 148–53. ISBN 978-80-87294-67-3.

  20. Kalup A, Smetana B, Kawuloková M, Zlá S, Francová H, Dostál P, Waloszková K, Waloszková L, Dobrovská J. Liquidus and solidus temperatures and latent heats of melting steels. J Therm Anal Calorim. 2017;127:123–8.

    Article  CAS  Google Scholar 

  21. Drozdová Ľ, Smetana B, Machů M, Zlá S, Vontorová J, Váňová P, Řeháčková L, Novák V, Konečná K, Petlák D, Jahodová K. Experimental and theoretical determination of heat capacities of model alloys based on Fe–C–Cr. In: Proceedings paper, METAL 2018: 27th anniversary international conference on metallurgy and materials. p. 63–8. ISBN 978-808729484-0.

  22. Miettinen J, Louhenkilpi S, Kytönen H, Laine J. IDS: thermodynamic-kinetic-empirical tool for modelling of solidification, microstructure and material properties. Math Comput Simulat. 2010;80:1536–50.

    Article  Google Scholar 

  23. Smetana B, Žaludová M, Tkadlečková M, et al. Experimental verification of hematite ingot mould heat capacity and its direct utilisation in simulation of casting process. J Therm Anal Calorim. 2013;112:473–80.

    Article  CAS  Google Scholar 

  24. Chen Q, Sundman B. Modeling of thermodynamic properties for Bcc, Fcc, liquid, and amorphous iron. JPE. 2001;22:631–44.

    Article  CAS  Google Scholar 

  25. Loder D, Michelic SK, Mayerhofer A, Bernhard C, Dippenaar RJ. In situ observation of acicular ferrite formation using HT-LSCM: possibilities, challenges and influencing factors. In Proceedings paper: materials science and technology conference and exhibition 2014. p. 469–76. ISBN 9781634397230.

  26. Sopoušek J. Phase equilibria and diffusion-controlled processes in selected systems of metals and their alloys (commentary). Brno: MU in Brno, Science Faculty, Chemical Institute; 2002.

    Google Scholar 

  27. Lašček M. Specific heat capacity of austenitic chrome–nickel steel Cr18Ni9. Acta MetallurgicaSlovaca. 2008;1:34–49.

    Google Scholar 

  28. Bhadeshia HKDH. Phasefield modelling. In: Kinetics and microstructure modelling. University of Cambridge; 2010. https://www.phase-trans.msm.cam.ac.uk/mphil/MP6-15.pdf. Accessed 16 Sept 2018.

  29. Chen L-Q. Phase-field models for microstructure evolution. Annu Rev Mater Res. 2002;32:113–40.

    Article  CAS  Google Scholar 

  30. Presoly P, Pierer R, Bernhard C. Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations. Metall and Mat Trans A. 2013;44:5377–88.

    Article  CAS  Google Scholar 

  31. Yin H, Emi T, Shibata H. Determination of free energy of δ-ferrite/γ-austenite interphase boundary of low carbon steels by in situ observation. ISIJ Int. 1998;38:794–801.

    Article  CAS  Google Scholar 

  32. McDonald NJ, Sridhar S. Observations of the advancing δ-ferrite/γ-austenite/liquid interface during the peritectic reaction. J Mater Sci. 2005;40:2411–6.

    Article  CAS  Google Scholar 

  33. Reid M, Phelan M, Dippenaar R. Concentric solidification for high temperature laser scanning confocal microscopy. ISIJ Int. 2004;44:565–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was created on the Faculty of Materials Science and Technology in GAČR Project No. 17-18668S, the Project No. CZ.1.05/2.1.00/19.0387, faculty student Projects SP2020/89, SP2020/34 and of the Moravian-Silesian Region as part of the project “Support of gifted students of doctoral studies at VŠB-TUO” No.: 04766/2017/RRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomíra Drozdová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdová, Ľ., Smetana, B., Presoly, P. et al. Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methods. J Therm Anal Calorim 142, 535–546 (2020). https://doi.org/10.1007/s10973-020-10305-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10305-w

Keywords

Navigation