Skip to main content
Log in

Use of thermal analysis to predict the conditions for thermal explosion to occur: application to a Ce triethanolamine complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This contribution explores the capabilities of combined thermal analysis methods to predict the ignition condition for a thermal runaway event to occur in a system heated at a constant rate. In particular, for a Ce triethanolamine complex, thermogravimetry has been used to determine the kinetic parameters, while enthalpy, thermal conductivity and thermal capacity have been measured by means of DSC. Once these parameters are known, it is possible to predict the critical mass for different heating rates and crucible sizes. Besides, thermogravimetry allowed us to assess if thermal runaway occurred as well as to monitor its evolution. Good agreement between the predicted and the experimental critical masses has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merzhanov AG, Khaikin BI. Theory of combustion waves in homogeneous media. Prog Energy Combust Sci. 1988;14:1–98.

    CAS  Google Scholar 

  2. Adler J, Enig JW. The critical conditions in thermal explosion theory with reactant consumption. Combust Flame. 1964;8:97–103.

    CAS  Google Scholar 

  3. Zaldívar JM, Cano J, Alós MA, Sempere J, Nomen R, Lister D, et al. A general criterion to define runaway limits in chemical reactors. J Loss Prev Process Ind. 2003;16:187–200.

    Google Scholar 

  4. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.

    CAS  Google Scholar 

  5. Krause G. Volume-dependent self-ignition temperatures for explosive materials. Propellants Explos Pyrotech. 2012;37:107–15.

    CAS  Google Scholar 

  6. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117:1017–26.

    CAS  Google Scholar 

  7. Dellavedova M, Pasturenzi C, Gigante L, Lunghi A. Kinetic evaluations for the transportation of dangerous chemical compounds. Chem Eng Trans. 2012;26:585–90.

    Google Scholar 

  8. Boddington T, Cottrell A, Laye PG. A numerical model of combustion in gasless pyrotechnic systems. Combust Flame. 1989;76:63–9.

    CAS  Google Scholar 

  9. Zinn J, Mader CL. Thermal initiation of explosives. J Appl Phys. 1960;31:323.

    CAS  Google Scholar 

  10. Rogers RN. Thermochemistry of explosives. Thermochim Acta. 1975;11:131–9.

    CAS  Google Scholar 

  11. Victor AC. Simple calculation methods for munitions cookoff times and temperatures. Propellants Explos Pyrotech. 1995;20:252–9.

    CAS  Google Scholar 

  12. Kotoyori T. Critical temperatures for the thermal explosion of chemicals. Ind. Saf. Ser. 1st ed. Amsterdam: Elsevier; 2005.

    Google Scholar 

  13. Griffiths JF, Barnard JA. Flame and combustion. 3rd ed. London: CRC Press; 1995.

    Google Scholar 

  14. Phung PV, Hardt AP. Ignition characteristics of gasless reactions. Combust Flame. 1974;22:323–35.

    CAS  Google Scholar 

  15. Morsi K. The diversity of combustion synthesis processing: a review. J Mater Sci. 2011;47:68–92.

    Google Scholar 

  16. Moore JJ, Feng HJ. Combustion synthesis of advanced materials: part I. Reaction parameters. Prog Mater Sci. 1995;39:243–73.

    CAS  Google Scholar 

  17. Varma A, Rogachev AS, Mukasyan AS, Hwang S. Combustion synthesis of advanced materials: principles and applications. Adv Chem Eng. 1998;24:79–226.

    CAS  Google Scholar 

  18. Patil KC, Aruna ST, Mimani T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci. 2002;6:507–12.

    CAS  Google Scholar 

  19. Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30:311–32.

    CAS  Google Scholar 

  20. Yeh C-L. Combustion synthesis: principles and applications. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of materials, science and technology. 2nd ed. Oxford: Elsevier; 2010. p. 1–8.

    Google Scholar 

  21. Reeves RV, Rodriguez MA, Jones ED, Adams DP. Condensed-phase and oxidation reaction behavior of Ti/2B foils in varied gaseous environments. J Phys Chem C Am Chem Soc. 2012;116:17904–12.

    CAS  Google Scholar 

  22. Wang J, Besnoin E, Knio OM, Weihs TP. Effects of physical properties of components on reactive nanolayer joining. J Appl Phys. 2005;97:114307.

    Google Scholar 

  23. Striker T, Ruud JA. Effect of fuel choice on the aqueous combustion synthesis of lanthanum ferrite and lanthanum manganite. J Am Ceram Soc. 2010;93:2622–9.

    CAS  Google Scholar 

  24. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116:14493–58686.

    CAS  PubMed  Google Scholar 

  25. Rabinovich OS, Grinchuk PS, Andreev MA, Khina BB. Conditions for combustion synthesis in nanosized Ni/Al films on a substrate. Phys B Condens Matter. 2007;392:272–80.

    CAS  Google Scholar 

  26. Thiers L, Mukasyan AS, Varma A. Thermal explosion in Ni–Al system: influence of reaction medium microstructure. Combust Flame. 2002;131:198–209.

    CAS  Google Scholar 

  27. Frank-Kamenetskii DA. Diffusion and heat exchange in chemical kinetics. 2nd ed. New Jersey: Princeton University Press; 1955.

    Google Scholar 

  28. Semenov N. Thermal theory of combustion and explosion. Prog Phys Sci USSR. 1940;23:251–92.

    CAS  Google Scholar 

  29. Kassoy DR, Liñan A. The influence of reactant consumption on the critical conditions for homogeneous thermal explosions. Q J Mech Appl Math. 1978;31:99–112.

    Google Scholar 

  30. Gray P, Harper MJ. Thermal explosions. Part 1. Induction periods and temperature changes before spontaneous ignition. Trans Faraday Soc. 1959;55:581–90.

    CAS  Google Scholar 

  31. Todes OM, Melentjew PV. The theory of heat explosion II Heat explosion for mono-molecular reactions. Acta Physicochim URSS. 1939;11:153–80.

    CAS  Google Scholar 

  32. Squire W. A mathematical analysis of self-ignition. Combust Flame. 1963;7:1–8.

    Google Scholar 

  33. Gray P, Lee PR. Thermal explosions and the effect of reactant consumption on critical conditions. Combust Flame. 1965;9:201–3.

    CAS  Google Scholar 

  34. Lacey AA. Critical behaviour of homogeneous reacting systems with large activation energy. Int J Eng Sci. 1983;21:501–15.

    CAS  Google Scholar 

  35. Babushok VI, Goldshtein VM, Sobolev VA. Critical conditions for thermal explosion with reactant consumption. Combust Sci Technol. 1990;70:81–9.

    CAS  Google Scholar 

  36. Thomas PH. Effect of reactant consumption on the induction period and critical condition for a thermal explosion. Proc R Soc A Math Phys Eng Sci. 1961;262:192–206.

    CAS  Google Scholar 

  37. Morbidelli M, Varma A. A generalized criterion for parametric sensitivity: application to thermal explosion theory. Chem Eng Sci. 1988;43:91–102.

    CAS  Google Scholar 

  38. Sánchez-Rodriguez D, Farjas J, Roura P. The critical condition for thermal explosion in an isoperibolic system. AIChE J. 2017;63:3979–93.

    Google Scholar 

  39. Sánchez-Rodriguez D, Farjas J, Roura P. The critical conditions for thermal explosion in a system heated at a constant rate. Combust Flame. 2017;186:211–9.

    Google Scholar 

  40. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem Annu Rev. 1997;48:125–49.

    CAS  Google Scholar 

  41. Sánchez-Rodríguez D, Yamaguchi S, Ihara D, Yamaura H, Yahiro H. Self-propagating high-temperature synthesis of highly dispersed noble metals on ceria powder: application to Pd/CeO2 catalyst. Ceram Int. 2017;43:14533–6.

    Google Scholar 

  42. Wattanathana W, Wannapaiboon S, Veranitisagul C, Laosiripojana N, Koonsaeng N, Laobuthee A. Preparation of palladium-impregnated ceria by metal complex decomposition for methane steam reforming catalysis. Adv Mater Sci Eng. 2017;2017:1–10.

    Google Scholar 

  43. Wattanathana W, Veranitisagul C, Wannapaiboon S, Klysubun W, Koonsaeng N, Laobuthee A. Samarium doped ceria (SDC) synthesized by a metal triethanolamine complex decomposition method: characterization and an ionic conductivity study. Ceram Int. 2017;43:9823–30.

    CAS  Google Scholar 

  44. Wattanathana W, Nootsuwan N, Veranitisagul C, Koonsaeng N, Laosiripojana N, Laobuthee A. Simple cerium-triethanolamine complex: synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming. J Mol Struct. 2015;1089:9–15.

    CAS  Google Scholar 

  45. Liu K, Zhong M. Synthesis of monodispersed nanosized CeO2 by hydrolysis of the cerium complex precursor. J Rare Earths. 2010;28:680–3.

    CAS  Google Scholar 

  46. Pati RK, Lee IC, Gaskell KJ, Ehrman SH. Precipitation of nanocrystalline CeO2 using triethanolamine. Langmuir. 2009;25:67–70.

    CAS  PubMed  Google Scholar 

  47. Zghal I, Farjas J, Camps J, Dammak M, Roura-Grabulosa P. Thermal decomposition of cerium triethanolamine complexes. Thermochim Acta. 2020;683:178430.

    CAS  Google Scholar 

  48. İçbudak H, Yilmaz VT, Ölmez H. Thermal decomposition behaviour of some trivalent transition and inner-transition metal complexes of triethanolamine. Thermochim Acta. 1996;289:23–322.

    Google Scholar 

  49. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757–66.

    CAS  Google Scholar 

  50. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part II. Complex transformations. J Therm Anal Calorim. 2011;105:767–73.

    CAS  Google Scholar 

  51. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    CAS  Google Scholar 

  52. Vyazovkin S, Burnham AK, Criado JM, Pérez-maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  53. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.

    Google Scholar 

  54. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    CAS  Google Scholar 

  55. Li C-R, Tang TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325:43–6.

    CAS  Google Scholar 

  56. Li C-R, Tang TB. Dynamic thermal analysis of solid-state reactions. J Therm Anal. 1997;49:1243–8.

    CAS  Google Scholar 

  57. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    CAS  Google Scholar 

  58. Pujula M, Sánchez-Rodríguez D, Lopez-Olmedo JP, Farjas J, Roura P. Measuring thermal conductivity of powders with differential scanning calorimetry. J Therm Anal Calorim. 2016;125:571–7.

    CAS  Google Scholar 

  59. Sánchez-Rodríguez D, López-Olmedo JP, Farjas J, Roura P. Determination of thermal conductivity of powders in different atmospheres by differential scanning calorimetry. J Therm Anal Calorim. 2015;121:469–73.

    Google Scholar 

  60. Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta. 2014;589:37–46.

    Google Scholar 

  61. Farjas J, Sánchez-Rodriguez D, Eloussifi H, Roura P. Thermal gradients in thermal analysis experiments. In: Šesták J, Hubík P, Mareš JJ, editors. Thermal physics and thermal analysis: from macro to micro, highlighting thermodynamics, kinetics and nanomaterials. Budapest: Springer; 2017. p. 345–362.

    Google Scholar 

  62. Mukasyan AS, Rogachev AS. Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci. 2008;34:377–416.

    CAS  Google Scholar 

  63. Roura P, Sanchez-Rodriguez D, Farjas J. Measurement by differential scanning calorimetry of specific heat capacity variation due to crystallization: application to amorphous silicon. Thermochim Acta. 2011;522:161–5.

    CAS  Google Scholar 

  64. García E, Sánchez-Rodríguez D, López-Olmedo JP, Farjas J, Roura P. The effect of volatiles on the measurement of the reaction heat by differential scanning calorimetry. J Therm Anal Calorim. 2015;121:187–94.

    Google Scholar 

  65. Merzhanov AG, Barzykin VV, Shteinberg AS, Gontkovskaya VT. Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim Acta. 1977;21:301–32.

    CAS  Google Scholar 

  66. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  67. Roura P, Farjas J. Analytical solution for the Kissinger equation. J Mater Res. 2009;24:3095–8.

    CAS  Google Scholar 

  68. Farjas J, Roura P. Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformations. Thermochim Acta. 2014;598:51–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Ministerio de Ciencia, Innovación y Universidades (Grant Number RTI2018-095853-B-C22), and by the Generalitat of Catalunya (2017-SGR-1519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Farjas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zghal, I., Farjas, J., Camps, J. et al. Use of thermal analysis to predict the conditions for thermal explosion to occur: application to a Ce triethanolamine complex. J Therm Anal Calorim 142, 2087–2094 (2020). https://doi.org/10.1007/s10973-020-10262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10262-4

Keywords

Navigation