Skip to main content
Log in

Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the intra-uterine flow with small suspended particles under the impact of heat transfer is investigated. Intra-uterine fluid motion occurs in a non-pregnant uterus which is essential for examining the embryo movement in a uterus. It also plays a key role in assisting sperm movement to the fallopian tube. The Jeffrey fluid through a tapered channel with compliant boundary walls is taken into account. The proposed Jeffrey fluid model has the following features. It is electrically conducting, incompressible, irrotational with constant density, etc. The mathematical formulation is conducted under the lubrication approach for both fluid and particulate phases. The formulated equations are linearly coupled, which are solved with the help of computational software, and the exact solutions for temperature and velocity profile are presented. The influence of key parameters for velocity, and thermal profiles is illustrated graphically. It is observed that the graphical results are in accordance with the physical expectations. The presented analysis is believed to aid in reducing the risk of miscarriages and fetal withering. The obtained results are helpful in examining the embryo transfer and hydrosalpinx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kunz G, Beil D, Deiniger H, Einspanier A, Mall G. Normal and impeded sperm transport within the female. Fate Male Germ Cell. 2012;424:267.

    Article  Google Scholar 

  2. Mekheimer KS, El Shehawey EF, Elaw AM. Peristaltic motion of a particle–fluid suspension in a planar channel. Int J Theor Phys. 1998;37:2895–920.

    Article  Google Scholar 

  3. Gao T, Hu HH. Deformation of elastic particles in viscous shear flow. J Comput Phys. 2009;228(6):2132–51.

    Article  CAS  Google Scholar 

  4. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT–CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  5. Varzaneh AA, Toghraie D, Karimipour A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2020;139(1):701–20.

    Article  CAS  Google Scholar 

  6. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, Bach QV. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Method Heat. 2019;30(5):2683–704.

    Article  Google Scholar 

  7. Mekheimer KS. Peristaltic transport of a particle–fluid suspension through a uniform and non-uniform annulus. Appl Bionics Biomech. 2008;5(2):47–57.

    Article  Google Scholar 

  8. Srinivasacharya D, Radhakrishnamacharya G, Srinivasulu CH. The effects of wall properties on peristaltic transport of a dusty fluid. Turk J Eng Environ Sci. 2009;32(6):357–65.

    Google Scholar 

  9. Siddiqa S, Begum N, Hossain MA, Mustafa N, Gorla RS. Two-phase dusty fluid flow along a cone with variable properties. Heat Mass Transf. 2017;53(5):1517–25.

    Article  CAS  Google Scholar 

  10. Khan AA, Tariq H. Influence of wall properties on the peristaltic flow of a dusty Walter’s B fluid. J Braz Soc Mech Sci Eng. 2018;40(8):368.

    Article  Google Scholar 

  11. Kiran GR, Murthy VR, Radhakrishnamacharya G. Pulsatile flow of a dusty fluid thorough a constricted channel in the presence of magnetic field. Mater Today. 2019;19:2645–9.

    Google Scholar 

  12. Haider S, Ijaz N, Zeeshan A, Li YZ. Magneto-hydrodynamics of a solid–liquid two-phase fluid in rotating channel due to peristaltic wavy movement. Int J Numer Method Heat. 2019;30(5):2501–16.

    Article  Google Scholar 

  13. Zhang L, Bhatti MM, Michaelides EE. Thermally developed coupled stress particle-fluid motion with mass transfer and peristalsis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09871-w.

    Article  Google Scholar 

  14. Muthuraj R, Nirmala K, Srinivas S. Influences of chemical reaction and wall properties on MHD peristaltic transport of a dusty fluid with heat and mass transfer. Alex Eng J. 2016;55(1):597–611.

    Article  Google Scholar 

  15. Gireesha BJ, Venkatesh P, Shashikumar NS, Prasannakumara BC. Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source. Nonlinear Eng. 2017;6(1):31–41.

    Article  Google Scholar 

  16. Abbas IA, Marin M. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys E Low Dimens Syst Nanostruct. 2017;87:254–60.

    Article  CAS  Google Scholar 

  17. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Numerical study on magnetohydrodynic CNTs–water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and Joule heating effect. Powder Technol. 2018;340:389–99.

    Article  CAS  Google Scholar 

  18. Zeeshan A, Ijaz N, Bhatti MM. Flow analysis of particulate suspension on an asymmetric peristaltic motion in a curved configuration with heat and mass transfer. Mech Ind. 2018;19(4):401.

    Article  CAS  Google Scholar 

  19. Gireesha BJ, Mahanthesh B, Thammanna GT, Sampathkumar PB. Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J Mol Liq. 2018;256:139–47.

    Article  CAS  Google Scholar 

  20. Kalpana G, Madhura KR, Kudenatti RB. Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium. Eng Sci Technol Int J. 2019;22(2):416–27.

    Article  Google Scholar 

  21. Prakash J, Siva EP, Tripathi D, Bég OA. Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel. Heat Transf Asian Res. 2019;48(7):2882–908.

    Article  Google Scholar 

  22. Reddy MG, Ferdows M. Species and thermal radiation on micropolar hydromagnetic dusty fluid flow across a paraboloid revolution. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09254-1.

    Article  Google Scholar 

  23. Bhatti MM, Elelamy AF, Sait SM, Ellahi R. Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy. Symmetry. 2020;12(4):532.

    Article  Google Scholar 

  24. Rashidi S, Hormozi F, Doranehgard MH. Abilities of porous materials for energy saving in advanced thermal systems. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09880-9.

    Article  Google Scholar 

  25. Moravej M, Bozorg MV, Guan Y, Li LK, Doranehgard MH, Hong K, Xiong Q. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustain Energy Technol Assess. 2020;40:100783.

    Google Scholar 

  26. Noreen S, Kausar T, Tripathi D, Ain QU, Lu DC. Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Therm Sci Eng Prog. 2020;17:100486.

    Article  Google Scholar 

  27. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–19.

    Article  Google Scholar 

  28. Tian Z, Arasteh H, Parsian A, Karimipour A, Safaei MR, Nguyen TK. Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis. Phys. A. 2019;535:122456.

    Article  CAS  Google Scholar 

  29. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139(4):2623–31.

    Article  CAS  Google Scholar 

  30. Reddy GK, Yarrakula K, Raju CS, Rahbari A. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim. 2018;132(3):1995–2002.

    Article  Google Scholar 

  31. Bhatti MM, Riaz A, Zhang L, Sait SM, Ellahi R. Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09876-5.

    Article  Google Scholar 

  32. Charm SE, Kurland GS. Blood flow and microcirculation. New York: Wiley; 1974.

    Google Scholar 

  33. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138(2):1311–26.

    Article  CAS  Google Scholar 

  34. Nisar Z, Hayat T, Alsaedi A, Ahmad B. Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09576-0.

    Article  Google Scholar 

  35. Vatnick I, Ignotz G, McBride BW, Bell AW. Effect of heat stress on ovine placental growth in early pregnancy. J Dev Physiol. 1991;16(3):163–6.

    CAS  PubMed  Google Scholar 

  36. Regnault TR, Orbus RJ, Battaglia FC, Wilkening RB, Anthony RV. Altered arterial concentrations of placental hormones during maximal placental growth in a model of placental insufficiency. J Endocrinol. 1999;162(3):433–42.

    Article  CAS  Google Scholar 

  37. Goldman M, Troisi R, Rexrode K. Women and health. 2nd ed. Amsterdam: Elsevier; 2012.

    Google Scholar 

  38. Savitz DA. Magnetic fields and miscarriage. Epidemiology. 2002;13(1):1–3.

    Article  Google Scholar 

Download references

Acknowledgements

M. M. Bhatti was supported by the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province [Nonlinear Sciences Research Team].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.M., Alamri, S.Z., Ellahi, R. et al. Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. J Therm Anal Calorim 144, 2259–2267 (2021). https://doi.org/10.1007/s10973-020-10233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10233-9

Keywords

Navigation