Skip to main content
Log in

Synergistic effect of layered melamine-phytate and intumescent flame retardant on enhancing fire safety of polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The possibility of layered melamine-phytate (MEL-PA) as an efficient synergist for intumescent flame retardant (IFR) is explored. The synergistic effects of MEL-PA on polypropylene (PP)/IFR composites are investigated in terms of flammability tests and combustion under forced-flaming condition. The addition of MEL-PA can effectively improve limited oxygen index (LOI) of PP composites. When 2 mass% MEL-PA is incorporated, the LOI value is enhanced from 33.0 to 35.1%. In addition, fire-retardant performance is increased with the addition of MEL-PA. The heat and smoke releases of PP/IFR are greatly reduced by MEL-PA. When IFR is partially replaced by 0.5, 1.0 and 2.0 mass% MEL-PA, total smoke production values are decreased by 27.2%, 34.8% and 57.6%, respectively. Raman spectra analysis indicates that the adding of MEL-PA results in higher graphitization degree of char layer. This work proves that MEL-PA and IFR have a good synergistic effect on flame-retardant PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nachtigall SMB, Miotto M, Schneider EE, Mauler RS, Forte MMC. Macromolecular coupling agents for flame retardant materials. Eur Polym J. 2006;42(5):990–9.

    CAS  Google Scholar 

  2. Liu HC, Li S, Zhang ZY, Li B, Xu MJ. An efficient and convenient strategy toward fire safety and water resistance of polypropylene composites through design and synthesis of a novel mono-component intumescent flame retardant. Polym Adv Technol. 2019;30(7):1543–54.

    CAS  Google Scholar 

  3. Yuan BH, Sun YR, Chen XF, Shi YQ, Dai HM, He S. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos Part A Appl Sci. 2018;109:345–54.

    CAS  Google Scholar 

  4. Zhang T, Tao YJ, Zhou F, Sheng HB, Qiu SL, Ma C, et al. Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene. Polym Degrad Stab. 2019;165:207–19.

    CAS  Google Scholar 

  5. Ren Y, Wei LF, Li WM, Yuan DD, Yang YY, Cai XF. Synthesis of silicic poly carbonyl urea and its flame-retardant effect on polypropylene for char forming. J Therm Anal Calorim. 2019;137(4):1267–77.

    CAS  Google Scholar 

  6. Zhao ZL, Jin Q, Zhang NE, Guo XR, Yan H. Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene. Polym Degrad Stab. 2018;150:73–85.

    CAS  Google Scholar 

  7. Yuan BH, Fan A, Yang M, Chen XF, Hu Y, Bao CL, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab. 2017;143:42–56.

    CAS  Google Scholar 

  8. Yuan BH, Hu Y, Chen XF, Shi YQ, Niu Y, Zhang Y, et al. Dual modification of graphene by polymeric flame retardant and Ni (OH)2 nanosheets for improving flame retardancy of polypropylene. Compos Part A Appl Sci. 2017;100:106–17.

    CAS  Google Scholar 

  9. Zheng ZH, Zhang L, Liu Y, Wang HY. A facile and novel modification method of beta-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. J Polym Res. 2016;23(4):1–17.

    Google Scholar 

  10. Sut A, Metzsch-Zilligen E, Grosshauser M, Pfaendner R, Schartel B. Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym Test. 2019;74:196–204.

    CAS  Google Scholar 

  11. Enescu D, Frache A, Lavaselli M, Monticelli O, Marino F. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym Degrad Stab. 2013;98(1):297–305.

    CAS  Google Scholar 

  12. Feng X, Fan J, Li A, Li G. Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Appl Mater Inter. 2019;11(17):16075–86.

    CAS  Google Scholar 

  13. Wang D, Feng X, Zhang L, Li M, Liu M, Tian A, et al. Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem Eng J. 2019;375:121933.

    CAS  Google Scholar 

  14. Zhu Z-M, Wang L-X, Lin X-B, Dong L-P. Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym Degrad Stab. 2019;169:108981.

    CAS  Google Scholar 

  15. Lu WM, Li Q, Zhang Y, Yu HW, Hirose S, Hatakeyama H, et al. Lignosulfonate/APP IFR and its flame retardancy in lignosulfonate-based rigid polyurethane foams. J Wood Sci. 2018;64(3):287–93.

    CAS  Google Scholar 

  16. Zheng ZH, Liu Y, Zhang L, Wang HY. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci. 2016;51(12):5857–71.

    CAS  Google Scholar 

  17. Xu LF, Lei CH, Xu RJ, Zhang XQ, Zhang F. Functionalization of alpha-zirconium phosphate by polyphosphazene and its effect on the flame retardance of an intumescent flame retardant polypropylene system. RSC Adv. 2016;6(81):77545–52.

    CAS  Google Scholar 

  18. Xie HL, Lai XJ, Li HQ, Zeng XR. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym Degrad Stab. 2016;130:68–77.

    CAS  Google Scholar 

  19. Xie HL, Lai XJ, Zhou RM, Li HQ, Zhang YJ, Zeng XR, et al. Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab. 2015;118:167–77.

    CAS  Google Scholar 

  20. Chen SJ, Wang CL, Li J. Effect of alkyl groups in organic part of polyoxo-metalates based ionic liquids on properties of flame retardant polypropylene. Thermochim Acta. 2016;631:51–8.

    CAS  Google Scholar 

  21. Wang Y, Xu MJ, Li B. Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites. Polym Degrad Stab. 2016;131:20–9.

    CAS  Google Scholar 

  22. Yang B, Chen Y, Zhang M, Yuan GW. Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/intumescent flame retardant composite system. Compos Part A Appl Sci. 2019;123:46–58.

    CAS  Google Scholar 

  23. Zhang QJ, Zhan J, Zhou KQ, Lu HD, Zeng WR, Stec AA, et al. The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polym Degrad Stab. 2015;115:38–44.

    Google Scholar 

  24. Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY, et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    CAS  Google Scholar 

  25. Xu JY, Li KD, Deng HM, Lv S, Fang PK, Liu H, et al. Preparation of MCA-SiO2 and its flame retardant effects on glass fiber reinforced polypropylene. Fiber Polym. 2019;20(1):120–8.

    CAS  Google Scholar 

  26. Deng HM, Xu JY, Li XY, Ye YL, Chen HQ, Chen SY, et al. The synergistic action between anhydride grafted carbon fiber and intumescent flame retardant enhances flame retardancy and mechanical properties of polypropylene composites. Sci Technol Adv Mater. 2018;19(1):718–31.

    CAS  Google Scholar 

  27. Xiao D, Li Z, Zhao XM, Gohs U, Wagenknecht U, Voit B, et al. Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene. Appl Clay Sci. 2017;143:192–8.

    CAS  Google Scholar 

  28. Yang R, Ma BB, Zhang X, Li JC. Fire retardance and smoke suppression of polypropylene with a macromolecular intumescent flame retardant containing caged bicyclic phosphate and piperazine. J Appl Polym Sci. 2019;136(25):9.

    Google Scholar 

  29. Nie SB, Zhang C, Peng C, Wang DY, Ding DW, He QL. Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites. J Spectrosc. 2015. https://doi.org/10.1155/2015/289298.

    Article  Google Scholar 

  30. Feng CM, Liang MY, Jiang JL, Zhang YK, Huang JG, Liu HB. Synergism effect of CeO2 on the flame retardant performance of intumescent flame retardant polypropylene composites and its mechanism. J Anal Appl Pyrol. 2016;122:405–14.

    CAS  Google Scholar 

  31. Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J. 2016;76:196–207.

    CAS  Google Scholar 

  32. Tang WF, Zhang S, Gu XY, Sun J, Jin XD, Li HF. Effects of kaolinite nanoroll on the flammability of polypropylene nanocomposites. Appl Clay Sci. 2016;132:579–88.

    Google Scholar 

  33. Su XQ, Yi YW, Tao J, Qi HQ, Li DY. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym Degrad Stab. 2014;105:12–20.

    CAS  Google Scholar 

  34. Li B, Xu MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab. 2006;91(6):1380–6.

    CAS  Google Scholar 

  35. Wen PY, Feng XM, Kan YC, Hu Y, Yuen RKK. Synthesis of a novel triazine-based polymeric flame retardant and its application in polypropylene. Polym Degrad Stab. 2016;134:202–10.

    CAS  Google Scholar 

  36. Wang W, Wen PY, Zhan J, Hong NN, Cai W, Gui Z, et al. Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym Degrad Stab. 2017;144:454–63.

    CAS  Google Scholar 

  37. Shang S, Yuan BH, Sun YR, Chen GQ, Huang CY, Yu B, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interf Sci. 2019;553:364–71.

    CAS  Google Scholar 

  38. Nie S, Hu Y, Song L, He Q, Yang D, Chen H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym Adv Technol. 2008;19(8):1077–83.

    CAS  Google Scholar 

  39. Gaddam SK, Pothu R, Boddula R. Graphitic carbon nitride (g-C3N4) reinforced polymer nanocomposite systems-A review. Polym Compos. 2020;41(2):430–42.

    CAS  Google Scholar 

  40. Wang YC, Zhao JP. Effect of graphene on flame retardancy of graphite doped intumescent flame retardant (IFR) coatings: synergy or antagonism. Coatings. 2019;9(2):12.

    CAS  Google Scholar 

  41. Shi YQ, Liu C, Fu LB, Yang FQ, Lv YC, Yu B. Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Compos Part B Eng. 2019;179:8.

    Google Scholar 

  42. Shang S, Ma X, Yuan BH, Chen GQ, Sun YR, Huang CY, et al. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Compos Part B Eng. 2019;177:10.

    Google Scholar 

  43. Mu XW, Chu FK, Xiao YL, Zhou X, Cai W, He LX, et al. Study on thermal oxidation resistance of covalent organic frameworks based heteroatoms doped porous carbon. Mater Lett. 2020;270:4.

    Google Scholar 

  44. Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J. 2014;237:411–20.

    CAS  Google Scholar 

  45. Zhang S, Tang WF, Guo J, Jin XD, Li HF, Gu XY, et al. Improvement of flame retardancy and thermal stability of polypropylene by P-type hydrated silica aluminate containing lanthanum. Polym Degrad Stab. 2018;154:276–84.

    CAS  Google Scholar 

  46. Ding Y, Swann JD, Sun Q, Stoliarov SI, Kraemer RH. Development of a pyrolysis model for glass fiber reinforced polyamide 66 blended with red phosphorus: relationship between flammability behavior and material composition. Compos Part B Eng. 2019;176:107263.

    CAS  Google Scholar 

  47. Wang JL, Hu YX, Cai W, Yuan BH, Zhang Y, Guo WW, et al. Atherton-Todd reaction assisted synthesis of functionalized multicomponent MoSe2/CNTs nanoarchitecture towards the fire safety enhancement of polymer. Compos Part A Appl Sci. 2018;112:271–82.

    CAS  Google Scholar 

  48. Cai W, Wang J, Pan Y, Guo W, Mu X, Feng X, et al. Mussel-inspired functionalization of electrochemically exfoliated graphene: based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J Hazard Mater. 2018;352:57–69.

    CAS  PubMed  Google Scholar 

  49. Wang ZJ, Liu YF, Li J. Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. J Anal Appl Pyrol. 2016;121:394–402.

    CAS  Google Scholar 

  50. Xu ZZ, Huang JQ, Chen MJ, Tan Y, Wang YZ. Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym Degrad Stab. 2013;98(10):2011–20.

    CAS  Google Scholar 

  51. Wang XG, Sun J, Liu XD, Jiang SL, Wang JL, Li HF, et al. An effective flame retardant containing hypophosphorous acid for poly (lactic acid): fire performance, thermal stability and mechanical properties. Polym Test. 2019;78:9.

    Google Scholar 

  52. Wang XJ, Wang ZB, Li J. Effects of a semi-bio-based triazine derivative on intumescent flame-retardant polypropylene. Polym Adv Technol. 2019;30(5):1259–68.

    CAS  Google Scholar 

  53. Xu B, Wu X, Ma W, Qian LJ, Xin F, Qiu Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J Anal Appl Pyrol. 2018;134:231–42.

    CAS  Google Scholar 

  54. Shi Y, Yu B, Duan L, Gui Z, Wang B, Hu Y, et al. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater. 2017;332:87–96.

    CAS  PubMed  Google Scholar 

  55. Yu B, Shi Y, Yuan B, Qiu S, Xing W, Hu W, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A. 2015;3(15):8034–44.

    CAS  Google Scholar 

  56. Yu B, Xing W, Guo W, Qiu S, Wang X, Lo S, et al. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J Mater Chem A. 2016;4(19):7330–40.

    CAS  Google Scholar 

  57. Duan LJ, Yang HY, Song L, Hou YB, Wang W, Gui Z, et al. Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polym Degrad Stab. 2016;134:179–85.

    CAS  Google Scholar 

  58. Wang J, Zhang D, Zhang Y, Cai W, Yao C, Hu Y, et al. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater. 2019;362:482–94.

    CAS  PubMed  Google Scholar 

  59. Zhou K, Liu C, Gao R. Polyaniline: a novel bridge to reduce the fire hazards of epoxy composites. Compos Part A Appl Sci. 2018;112:432–43.

    CAS  Google Scholar 

  60. Xia Y, Jin FF, Mao ZW, Guan Y, Zheng AN. Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stab. 2014;107:64–73.

    CAS  Google Scholar 

  61. Xu LF, Lei CH, Xu RJ, Zhang XQ, Xu JB. Intumescent flame retardant of polypropylene system with enhanced thermal properties and flame retardancy based on alpha-zirconium phosphate composite particles. Polym Bull. 2018;75(6):2707–27.

    CAS  Google Scholar 

  62. Wu NJ, Niu FK, Lang WC, Yu JH, Fu GL. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mater Des. 2019;181:10.

    Google Scholar 

  63. Yan H, Zhao ZL, Wang YH, Jin Q, Zhang XY. Structural modification of ammonium polyphosphate by DOPO to achieve high water resistance and hydrophobicity. Powder Technol. 2017;320:14–21.

    CAS  Google Scholar 

  64. Chen YJ, Wang W, Qiu Y, Li LS, Qian LJ, Xin F. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym Degrad Stab. 2017;140:166–75.

    CAS  Google Scholar 

  65. Qin RX, Zhang XF, Kong FB, Yang JN, Nie SB. Investigation on novel flame retardant low-density polyethylene composites based on THEIC and MCAPP. J Polym Res. 2019;26(6):8.

    Google Scholar 

  66. Sun Y, Yuan B, Shang S, Zhang H, Shi Y, Yu B, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos Part B Eng. 2020;181:107588.

    CAS  Google Scholar 

  67. Zheng ZH, Liu Y, Zhang L, Dai BY, Yang XD, Wang HY. Fabrication of halogen-free ammonium phosphate with two components via a simple method and its flame retardancy in polypropylene composites. J Therm Anal Calorim. 2017;127(3):2013–23.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was founded by the National Natural Science Foundation of China (51703175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bihe Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Yuan, B. & Shang, S. Synergistic effect of layered melamine-phytate and intumescent flame retardant on enhancing fire safety of polypropylene. J Therm Anal Calorim 147, 285–295 (2022). https://doi.org/10.1007/s10973-020-10228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10228-6

Keywords

Navigation