Skip to main content
Log in

Influence of thermal stratification and thermal radiation on graphene oxide-Ag/H2O hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the behavior of MHD hybrid nanofluid passing through a stretching sheet is examined. The current consideration also flashes the thermal radiation effects on hybrid nanofluid. Hybrid nanofluid is the new class of nanofluids which is very famous nowadays. Graphene oxide and silver as nanoparticles and water as a host fluid are considered. We presume low magnetic Reynolds number, and the magnetic field is enforced in the vertical direction. Features of heat transfer are assessed first time by exploiting the graphene oxide-Ag/H2O hybrid nanofluid with thermal radiation. By utilizing suitable transformations, governing equations are incorporated for heat and flow. Corresponding ordinary differential equations are solved by the homotopic procedure. The disparity of unlike parameters on flow and heat is revealed graphically. Resistive force is incorporated mathematically. The nanoparticle volume fraction of graphene oxide enhances both the velocity and temperature of the fluid. It is noticed that the thermal stratification parameter decays the temperature field while the opposite trend is observed for the radiation parameter. The heat transfer rate is disclosed by 3D graphs. It is observed that the temperature profile diminishes for enhanced thermal stratification parameters. Also, the heat transfer rate diminishes for radiation number and stratification parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

k*:

Mean absorption coefficient

k f :

Thermal conductivity of water

k nf :

Thermal conductivity of nanofluid

k hnf :

Thermal conductivity of hybrid nanofluid

\(k_{{s_{1} }}\) :

Thermal conductivity of graphene oxide

\(k_{{s_{2} }}\) :

Thermal conductivity of silver

a, b, c :

Dimensionless constants

f′:

Dimensionless velocity

T :

Fluid temperature

T 0 :

Refference temperature

\(T_{\infty }\) :

Ambient temperature

T w :

Surface temperature

U w (x):

Stretching velocity

U e (x):

Free stream velocity

B 0 :

Magnetic field

M:

Hartmann number

Pr:

Prandtl number

S 1 :

Stratification parameter

R :

Radiation number

C f :

Local skin friction coefficient

Rex :

Local Reynold's number

Nu:

Nusselt number

q w :

Heat flux

q r :

Radiative heat flux

\(\rho_{\text{hnf}}\) :

Density of hybrid nanofluid

\(\rho_{\text{f}}\) :

Density of water

\(\rho_{{{\text{s}}_{1} }}\) :

Density of GO

\(\rho_{{{\text{s}}_{2} }}\) :

Density of Ag

\(\mu_{\text{f}}\) :

Dynamic viscosity of base fluid

\(\mu_{\text{hnf}}\) :

Dynamic viscosity of hybrid nanofluid

\(\sigma\) :

Stefan–Boltzmann constant

\(\sigma_{\text{nf}}^{*}\) :

Electrical conductivity of nanofluid

\(\sigma_{\text{hnf}}^{*}\) :

Electrical conductivity of hybrid nanofluid

\(\sigma_{{{\text{s}}_{1} }}^{*}\) :

Electrical conductivity of GO

\(\sigma_{{{\text{s}}_{2} }}^{*}\) :

Electrical conductivity of Ag

\(\alpha_{\text{hnf}}\) :

Thermal diffusivity of hybrid nanofluid

\(\upsilon_{\text{hnf}}\) :

Kinematic viscosity of hybrid nanofluid

\(\eta\) :

Similarity variable

Φ1 :

Nanoparticle volume fraction of GO

Φ2 :

Nanoparticle volume fraction of Ag

\((\rho C)_{\text{f}}\) :

Specific heat of water

\((\rho C)_{\text{hnf}}\) :

Specific heat of hybrid nanofluid

\((\rho C)_{{{\text{s}}_{1} }}\) :

Specific heat of GO

\((\rho C)_{{{\text{s}}_{2} }}\) :

Specific heat of Ag

\(\theta\) :

Dimensionless temperature

\(\tau_{\text{w}}\) :

Wall shear stress

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the ASME international mechanical engineering congress and exposition (San Francisco, USA, ASME, FED, 231/MD), vol 66, 1995; pp. 99–105.

  2. Suresh S, Venkitaraja KP, Selvakumara P, Chandrasekarb M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388:41–8.

    Article  CAS  Google Scholar 

  3. Labib MN, Nine MdJ, Afrianto H, Chung H, Jeong H. Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. Int J Therm Sci. 2013;71:163–71.

    Article  Google Scholar 

  4. Harandi SS, Karimipour A, Afranda M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration Cattaneo–Christov double-diffusion. Int Commun Heat Mass Transf. 2016;76:171–7.

    Article  Google Scholar 

  5. Mehralia M, Ghatkesarb MK, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Appl Energy. 2018;224:103–15.

    Article  Google Scholar 

  6. Gholinia M, Armin M, Ranjbar AA, Ganji DD. Numerical thermal study on CNTs/C2H6O2–H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Stud Therm Eng. 2019;14:100490.

    Article  Google Scholar 

  7. Khan MR, Pan K, Khan AU, Nadeem S. Dual solutions for mixed convection flow of SiO2–Al2O3/water, hybrid nanofluid near the stagnation point flow over a curved surface. Phys A. 2019. https://doi.org/10.1016/j.physa.2019.123959.

    Article  Google Scholar 

  8. Khan MI, Hafeez MU, Hayat T, Khan MI, Alsaedi A. Magneto rotating flow of hybrid nanofluid with entropy generation. Comput Methods Programs Biomed. 2020;183:105093.

    Article  Google Scholar 

  9. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    Article  CAS  Google Scholar 

  10. Babar H, Sajid MU, Ali HM. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23:1713–54.

    Article  Google Scholar 

  11. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman W. Experimental investigation of TiO2-water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    Article  CAS  Google Scholar 

  12. Sadeghzadeh M, Maddah H, Ahmadi MH, Khadang A, Ghazvini M, Mosavi A, Nabipour N. Prediction of thermo-physical properties of TiO2-Al2O3/water nanoparticles by using artificial neural network. Nanomaterials. 2020;10:697.

    Article  CAS  Google Scholar 

  13. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Struct Nano-Objects. 2019;20:100386.

    Article  Google Scholar 

  14. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    Article  CAS  Google Scholar 

  15. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems-potential of nanofluids. J Mol Liq. 2019;289:111049.

    Article  CAS  Google Scholar 

  16. Elahi M, Soudagar M, Kalam MA, Sajid MU, Afzal A, Banapurmath NR, Akram N, Mane SD, Saleel CA. Thermal analyses of minichannels and use of mathematical and numerical models. Numer Heat Transf Part A: Appl. 2019;2019:1–41.

    Google Scholar 

  17. Hayat T, Farooq M, Alsaedi A. Thermally stratified stagnation point flow of Casson fluid with slip conditions. Int J Numer Methods Heat Fluid Flow. 2014;25:724–48.

    Article  Google Scholar 

  18. Rehman K, Khan AA, Malik MY, Zehra I, Ali U. Temperature and concentration stratification effects on Non-Newtonian fluid flow past a cylindrical surface. Results Phys. 2017;7:3659–67.

    Article  Google Scholar 

  19. Bilal S, Shafqatullah AS, Alshomrani MY, Malik N, Kousar F Khan, Rehman K. Analysis of Carreau fluid in the presence of thermal stratification and magnetic field. Results Phys. 2018;10:118–25.

    Article  Google Scholar 

  20. Daniel YS, Aziz ZA, Ismail Z, Salah F. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness. J Comput Des Eng. 2018;5:232–42.

    Google Scholar 

  21. Hayat T, Qayyum S, Alsaedi A, Ahmad B. Mechanism of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity. Results Phys. 2018;8:819–28.

    Article  Google Scholar 

  22. Kandasamy R, Dharmalingam R, Prabhu KKS. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex Eng J. 2018;57:121–30.

    Article  Google Scholar 

  23. Hamid A, Hashim M, Alghamdi M Khan, Alshomrani AS. An investigation of thermal and solutal stratification effects on mixed convection flow and heat transfer of Williamson nanofluid. J Mol Liq. 2019;284:307–15.

    Article  CAS  Google Scholar 

  24. Liao SJ. Homotopy analysis method in non-linear differential equations. Heidelberg: Springer and Higher Education Press; 2012.

    Book  Google Scholar 

  25. Liao SJ. Advances in the homotopy analysis method. Singapore: World Scientific Amazon; 2014.

    Book  Google Scholar 

  26. Ramzan M, Farooq M, Alsaedi A, Hayat T. MHD three-dimensional flow of couple stress fluid with Newtonian Heating. Eur Phys J Plus. 2013;128:28.

    Article  Google Scholar 

  27. Hayat T, Naseem A, Farooq M, Alsaedi A. Unsteady MHD three-dimensional flow with viscous dissipation and Joule heating. Eur Phys J Plus. 2013;128:158.

    Article  Google Scholar 

  28. Sui J, Zheng L, Zhang X, Chen G. Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int J Heat Mass Transf. 2015;85:1023–33.

    Article  Google Scholar 

  29. Mabood F, Mastroberardino A. Melting heat transfer on MHD convective flow of a nanofluid over a stretching sheet with viscous dissipation and second order slip. J Taiwan Inst Chem Eng. 2015;57:62–8.

    Article  CAS  Google Scholar 

  30. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A. Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq. 2016;220:642–8.

    Article  CAS  Google Scholar 

  31. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Flow between two stretchable rotating disks with Cattaneo–Christov heat flux model. Results Phys. 2017;7:126–33.

    Article  Google Scholar 

  32. Hayat T, Khan MI, Qayyum S, Alsaedi A. Entropy generation in flow with silver and copper nanoparticles. Colloids Surf A. 2018;539:335–46.

    Article  CAS  Google Scholar 

  33. Khan MI, Hayat T, Khan MI, Alsaedi A. Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int Commun Heat Mass Transf. 2018;91:216–24.

    Article  CAS  Google Scholar 

  34. Masood S, Farooq M, Ahmad S, Anjum A, Mir NA. Investigation of viscous dissipation in the nanofluid flow with a Forchheimer porous medium: modern transportation of heat and mass. Eur Phys J Plus. 2019;134:178.

    Article  Google Scholar 

  35. Sheikholeslami M, Hatami M, Ganji DD. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J Mol Liq. 2014;190:112–20.

    Article  CAS  Google Scholar 

  36. Khan MI, Hafeez MU, Hayat T, Khan MI, Alsaedi A. Magneto rotating flow of hybrid nanofluid with entropy generation. Comput Med Programs Biomed. 2020;183:105093.

    Article  Google Scholar 

  37. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43(2015):164–77.

    Article  CAS  Google Scholar 

  38. Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98.

    Article  CAS  Google Scholar 

  39. Sidik NAC, Jamil MM, Japar WMAA, Adamu IM. A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev. 2017;80:1112–22.

    Article  Google Scholar 

  40. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE 40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  41. Hayat T, Hussain Q, Javed T. The modified decomposition method and Pade ap-proximants for the MHD flow over a non-linear stretching sheet. Nonlinear Anal Real World Appl. 2009;10:966–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Masood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, S., Farooq, M. Influence of thermal stratification and thermal radiation on graphene oxide-Ag/H2O hybrid nanofluid. J Therm Anal Calorim 143, 1361–1370 (2021). https://doi.org/10.1007/s10973-020-10227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10227-7

Keywords

Navigation