Skip to main content
Log in

Thermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bioconvection flows are very much related to engineering and real-life phenomena, for example, in the design of bio-cells, bio-conjugates and bio-microsystems, and become a hot topic in the current research. Therefore, the purpose of the present investigation is to explore theoretically the time-dependent electrically conducting flow with heat and mass transfer containing gyrotactic microorganism with activation energy toward an elongated surface with the effect of thermal radiation. Impact of velocity, thermal and concentration slips are also taken into account. The classical problem of Navier Stokes equations in the present model is reduced into ODEs by employing similarity approach. Numerical simulations are performed via boundary value problem solver based on finite difference numerical scheme using MATLAB. Impact of convergence parameters like motile microorganisms, concentration, temperature and velocity fields is elaborated through graphically and in the form of tables. The significant outcomes display that the density of motile microorganisms decreases with Peclet number and bioconvection Lewis number, while opposite behavior is noted for thermal buoyancy and buoyancy force ratio parameter on velocity profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

Unsteadiness parameter

B :

Uniform magnetic field

\(B_{0}\) :

Magnetic induction

C :

Species concentration (mol m−3)

\(C_{\text{w}}\) :

Species concentration at the wall (mol m−3)

\(C_{\infty }\) :

Species concentration far from the surface (mol m−3)

\(C_{\text{f}}\) :

Local skin friction coefficient

\(c_{\text{p}}\) :

Specific heat capacity (\({\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1}\))

\(D_{\text{B}}\) :

Mass diffusivity (\({\text{m}}^{2} \;{\text{s}}^{ - 1}\))

\({\text{Gr}}\) :

Grashof number due to temperature

\({\text{Gr}}^{*}\) :

Grashof number due to concentration

\(J\) :

Slip factor of concentration

\(k^{*}\) :

Mean absorption coefficient

\(K\) :

Thermal slip factor

\(N_{0}\) :

Velocity slip factor

\(M\) :

Magnetic parameter

\(N\) :

Buoyancy force ratio parameter

\({\text{Nu}}_{\text{x}}\) :

Local Nusselt number

\(R_{\text{d}}\) :

Radiation parameter

\({ \Pr }\) :

Prandtl number

\(Q\) :

Local heat source/sink parameter

\(q_{\text{r}}\) :

Radiative heat flux (\({\text{W}}\;{\text{m}}^{ - 2}\))

\(J_{\text{w}}\) :

Surface mass flux (kg s−1 m−2)

\(q_{\text{w}}\) :

Surface heat flux (W m−2)

\({\text{Re}}_{\text{x}}\) :

Local Reynolds number

S :

Suction/injection parameter

\({\text{Sc}}\) :

Schmidt number

\(S_{\text{f}}\) :

Velocity slip parameter

\({\text{St}}\) :

Thermal slip parameter

\(S_{{{\text{c}}1}}\) :

Species concentration slip parameter

\({\text{Sh}}_{\text{x}}\) :

Local Shorewood number

\(n_{\infty }\) :

Microorganism far from the wall

\({\text{Lb}}\) :

Bioconvection Lewis number

σ1:

Bioconvection constant term

\(q_{\text{n}}\) :

Motile microorganism flux

T :

Temperature of the fluid

\(T_{\text{w}}\) :

Temperature at the wall

\(T_{\infty }\) :

Temperature of the fluid far away from the wall

\(u\) :

Velocity component along x-direction

\(v\) :

Velocity component along y-direction

\(U_{\text{w}}\) :

Stretching sheet wall velocity

\(U_{\infty }\) :

Free stream velocity

\(\lambda\) :

Buoyancy parameter due to temperature

\(\lambda_{1}\) :

Buoyancy parameter due to concentration

Ω:

Porosity parameter

\(\sigma\) :

Reaction rate parameter

\(\delta\) :

Temperature difference parameter

\(E\) :

Activation energy

\(\sigma^{*}\) :

Stefan Boltzmann constant

\(\tau_{\text{w}}\) :

Wall shear stress

\(\psi\) :

Stream function

\(\eta\) :

Transformed variable

\(\rho\) :

Density of the fluid

\(\mu\) :

Dynamic viscosity

\(\upsilon\) :

Kinematic viscosity

\(B_{\text{C}}\) :

Volumetric coefficient of the concentration expansion

\(B_{\text{T}}\) :

Volumetric coefficient of the thermal expansion

K :

Thermal diffusivity

a, b, c, d, m :

Constants

\(f^{\prime}\left( \eta \right)\) :

Velocity profile

\(\theta \left( \eta \right)\) :

Temperature profile

\(\phi \left( \eta \right)\) :

Concentration profile

\(\chi \left( \eta \right)\) :

Microorganism profile

\(W_{\text{c}}\) :

Maximum cell swimming speed

\(D_{\text{m}}\) :

Microorganism diffusivity

\(n_{\text{w}}\) :

Microorganism at the wall

\(n\) :

Motile microorganism

\({\text{Pe}}\) :

Bioconvection Peclet number

\({\text{Nn}}_{\text{x}}\) :

Density of motile microorganism

References

  1. Kuznetsov AV, Avramenko AA. Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int Commun Heat Mass. 2004;31:1–10.

    Article  Google Scholar 

  2. Kuznetsov AV, Geng P. The interaction of bioconvection caused by gyrotactic micro-organisms and settling of small solid particles. Int J Numer Methods Heat Fluid Flow. 2005;15(4):328–47. https://doi.org/10.1108/09615530510590597.

    Article  Google Scholar 

  3. Kuznetsov AV. The onset of nano fluid bio convection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass. 2010;37:1421–5.

    Article  CAS  Google Scholar 

  4. Kuznetsov AV. Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Eur J Mech B Fluids. 2011;30(2):156–65.

    Article  Google Scholar 

  5. Kuznetsov AV. Nanofluid bioconvection in water-based suspensions containing nanoparticles oxytactic microorganisms oscillatory instability. Nanoscale Res Lett. 2011;6:100.

    Article  Google Scholar 

  6. Khan WA, Makinde OD, Khan ZH. MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int J Heat Mass Transf. 2014;74:285–91.

    Article  Google Scholar 

  7. Ali FM, Nazar R, Arifin NM, Pop I. Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Appl Math Mech. 2014;35:155–66.

    Article  Google Scholar 

  8. Prasad KV, Vajravelu K, Datti PS. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties. Int J Non-Linear Mech. 2010;45:320–30.

    Article  Google Scholar 

  9. Ahmad N, Siddiqui ZU, Mishra MK. Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. Int J Non-Linear Mech. 2010;45:306–9.

    Article  Google Scholar 

  10. Sakiadis BC. Boundary-layer behavior on continues solid surfaces. AIChE J. 1961;7:221–5.

    Article  CAS  Google Scholar 

  11. Crane L. Flow past a stretching plate. ZAMP. 1970;21:645–7.

    Google Scholar 

  12. Pavlov KB. Magneto hydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface. Magn Gidrondin. 1974;4:146–52.

    Google Scholar 

  13. Anderson HI. An exact solution of the Navier–Stokes equation for magneto hydrodynamic flow. Acta Mech. 1995;113:241–4.

    Article  Google Scholar 

  14. Liu C. A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. Int Commun Heat Mass. 2005;32:1075–84.

    Article  CAS  Google Scholar 

  15. Hayat T, Asad S, Alaseadi A. MHD mixed convection flow of Burgers’ fluid in a thermally stratified medium. J Aerosp Eng. 2016;29(6):04016060.

    Article  Google Scholar 

  16. Tsou FK, Sparrow EM, Goldstein RJ. Flow and heat transfer in the boundary layer on a continuous moving surface. Int J Heat Mass Transf. 1967;10:219–35.

    Article  CAS  Google Scholar 

  17. Ishak A, Nazar R, Pop I. Mixed convection boundary layer in the stagnation point flow towards stretching vertical sheet. Meccanica. 2006;41:509–18.

    Article  Google Scholar 

  18. Saif RS, Muhammad T, Sadia H, Ellahi R. Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface. Phys A. 2020;551:124060.

    Article  CAS  Google Scholar 

  19. Soundalgekar VM, Martin BW, Gupta SK, Pop I. Unsteady boundary layer in a rotating fluid with time dependent suction. Publ Inst Math. 1976;20:215–26.

    Google Scholar 

  20. Khan M, Salahuddin T, Malik MY, Alqarni MS. Numerical modeling and analysis of bio convection on MHD flow due to an upper paraboloid surface of revolution. Phys A. 2020;12:4231.

    Google Scholar 

  21. Sarpakaya T. Flow of non-Newtonian fluids in a magnetic field. AIChE J. 1961;7:324–8.

    Article  Google Scholar 

  22. Truesdell C. Rational mechanics of materials. Int Sci Rev Ser. 1957;22:292–305.

    Google Scholar 

  23. Maleque KA. Unsteady natural convection boundary layer heat and mass transfer flow with exothermic chemical reactions. J Pure Appl Math. 2013;9(1):7–41.

    Google Scholar 

  24. Bhatti MM, Yousif MA, Mishra SR, Shahid A. Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana. 2019;93(6):88.

    Article  Google Scholar 

  25. Majeed A, Zeeshan A, Xu H, Kashif M, Masud U. Heat transfer analysis of magneto-Eyring–Powell fluid over a nonlinear stretching surface with multiple slip effects: application of Roseland’s heat flux. Can J Phys. 2019;97(12):1253–61.

    Article  CAS  Google Scholar 

  26. Batsman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14:389–96. https://doi.org/10.1002/er.4440140403.

    Article  Google Scholar 

  27. Zeeshan A, Ali Z, Gorji MR, Hussain F, Nadeem S. Flow analysis of biconvective heat and mass transfer of two-dimensional couple stress fluid over a paraboloid of revolution. Int J Mod Phy B. 2020. https://doi.org/10.1142/S0217979220501106.

    Article  Google Scholar 

  28. Majeed A, Zeeshan A, Noori FM. Analysis of chemically reactive species with mixed convection and Darcy–Forchheimer flow under activation energy: a novel application for geothermal reservoirs. J Therm Anal Calorim. 2019;140:2357–67.

    Article  Google Scholar 

  29. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2018;136(4):1769–79.

    Article  Google Scholar 

  30. Waqas H, Khan SU, Bhatti MM, Imran M. Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J Therm Anal Calorim. 2020;140:1293–306.

    Article  CAS  Google Scholar 

  31. Bhatti MM, Khalique CM, Bég TA, Bég OA, Kadir A. Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod Phy Lett B. 2020;34(2):2050026.

    Article  CAS  Google Scholar 

  32. Sharma K, Marin M. Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Analele Universitatii Ovidius Constanta-Seria Matematica. 2014;22(2):151–76.

    Article  Google Scholar 

  33. Chauhan PR, Kumar K, Kumar R, Rahimi-Gorji M, Bharj RS. Effect of thermophysical property variation on entropy generation towards micro-scale. J Non-Equilib Thermodyn. 2020;45(1):1–17.

    Article  CAS  Google Scholar 

  34. Seikh AH, Adeyeye O, Omar Z, Raza J, Rahimi-Gorji M, Alharthi N, Khan I. Enactment of implicit two-step Obrechkoff-type block method on unsteady sedimentation analysis of spherical particles in Newtonian fluid media. J Mol Liq. 2019;293:111416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaqib Majeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Zeeshan, A., Amin, N. et al. Thermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy. J Therm Anal Calorim 143, 2545–2556 (2021). https://doi.org/10.1007/s10973-020-10207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10207-x

Keywords

Navigation