Skip to main content
Log in

Butylated hydroxy benzylidene ring: an important moiety for antioxidant synergism of semicarbazones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The compounds having two or more antioxidant functions in their structure exhibit antioxidant synergism that generally increase the antioxidant activity of these compounds. In this study, two series of semicarbazone (7aj and 7a′j′) bearing butylated ortho and para hydroxy benzylidene ring were prepared for the investigation of antioxidant synergism. This study found that intramolecular hydrogen bond can form in semicarbazones due to the inappropriate position of hydroxyl group on benzylidene ring, which adversely affects the antioxidant synergism. As consequence, butylated para hydroxyl benzylidene phenyl semicarbazone (7a) (IC50 12.27 µM) showed ~ 4.3 times and ~ 2.7 times better antioxidant activity than compounds 7a′ (IC50 53.30 µM) and BHT (IC50 32.63 µM), respectively, in DPPH assay. In addition, based on the solubility in trimethylolpropane trioleate (TMPTO) as synthetic base oil and obtained IC50 results, oxidation stability of synthesized compounds was also evaluated by two kinds of differential scanning calorimeter (DSC) test, namely temperature ramping DSC and programmed temperature DSC. Thermogravimetric analysis is also performed for the thermal stability assessment. TMPTO incorporated with 0.25 mass% of 7c and 7e were found better oxidative (around 2 times) and thermal resistance than BHT. This DSC results showed another important aspect of semicarbazones that proper modification of semicarbazones can be used in the synthetic lubricant oil as a potential antioxidant. Thus, the results of this study are promising which can be taken under consideration to design and prepare more efficient multipotent semicarbazones.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48.

    Article  CAS  Google Scholar 

  2. Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev. 2020;57:100982.

    Article  CAS  Google Scholar 

  3. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118.

    Article  CAS  Google Scholar 

  4. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757.

    Article  CAS  Google Scholar 

  5. Aguilar G, Mazzamaro G, Rasberger M. Oxidative degradation and stabilisation of mineral oil-based lubricants. In: Mortier RM, Fox MF, Orszulik ST, editors. Chemistry and technology of lubricants. Berlin: Springer; 2010. p. 107–52.

  6. Poon J-F, Pratt DA. Recent insights on hydrogen atom transfer in the inhibition of hydrocarbon autoxidation. Acc Chem Res. 2018;51(9):1996–2005.

    Article  CAS  Google Scholar 

  7. Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran DJG, Science O, et al. Role of essential oils in food safety: antimicrobial and antioxidant applications. Grain Oil Sci Technol. 2019;2(2):49–55.

    Article  Google Scholar 

  8. Wu Y, Li W, Zhang M, Wang X. Improvement of oxidative stability of trimethylolpropane trioleate lubricant. Thermochim Acta. 2013;569:112–8.

    Article  CAS  Google Scholar 

  9. Pownraj C, Valan Arasu A. Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09837-y.

    Article  Google Scholar 

  10. Khan A, Gusain R, Sahai M, Khatri OP. Fatty acids-derived protic ionic liquids as lubricant additive to synthetic lube base oil for enhancement of tribological properties. J Mol Liquids. 2019;293:111444.

    Article  CAS  Google Scholar 

  11. Nath AR, Yehye WA, Zulkifli N, Johan MR. Ester of thiolated butylated hydroxytoluene: potential antioxidant for synthetic lubricant oil. Thermochim Acta. 2018;670:7–12.

    Article  CAS  Google Scholar 

  12. Soleimani M, Dehabadi L, Wilson LD, Tabil LG. Antioxidants classification and applications in lubricants. In: Johnson D, editors. Lubrication tribology, lubricants and additives; 2018. p. 23.

  13. Yehye WA, Rahman NA, Ariffin A, Hamid SBA, Alhadi AA, Kadir FA, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem. 2015;101:295–312.

    Article  CAS  Google Scholar 

  14. Stuckey BN. Antioxidants as food stabilizers. Boca Raton: CRC Press; 1972.

    Google Scholar 

  15. Boulebd H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: experimental and theoretical study. J Mol Struct. 2020;1201:127210.

    Article  CAS  Google Scholar 

  16. Mukhopadhyay AK. Antioxidants-natural and synthetic. Kiel: Amani Int’l Publishers; 2006.

    Google Scholar 

  17. de Jesus J, Ferreira A, Szilágyi I, Cavalheiro EJF. Thermal behavior and polymorphism of the antioxidants: BHA, BHT and TBHQ. Fuel. 2020;278:118298.

    Article  Google Scholar 

  18. Nath Pandeya S. Semicarbazone—a versatile therapeutic pharmacophore for fragment based anticonvulsant drug design. Acta Pharm. 2012;62(3):263–86.

    Article  Google Scholar 

  19. Liu Z, Wu S, Wang Y, Li R, Wang J, Wang L, et al. Design, synthesis and biological evaluation of novel thieno [3, 2-d] pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur J Med Chem. 2014;87:782–93.

    Article  CAS  Google Scholar 

  20. Yogeeswari P, Sriram D, Pandeya S, Stables J. 4-Sulphamoylphenyl semicarbazones with anticonvulsant activity. Il Farmaco. 2004;59(8):609–13.

    Article  CAS  Google Scholar 

  21. Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem. 2019;162:378–95.

    Article  CAS  Google Scholar 

  22. Sarker D, Karim MR, Haque MM, Zamir R, Asraf MA. Copper (II) complex of salicylaldehyde semicarbazone: synthesis, characterization and antibacterial activity. Asian J Chem Sci. 2019:6(4):1–8.

  23. Douchez A, Lubell WD. Chemoselective alkylation for diversity-oriented synthesis of 1, 3, 4-benzotriazepin-2-ones and pyrrolo [1, 2][1, 3, 4] benzotriazepin-6-ones, potential turn surrogates. Org Lett. 2015;17(24):6046–9.

    Article  CAS  Google Scholar 

  24. Jafri L, Ansari FL, Jamil M, Kalsoom S, Qureishi S, Mirza B. Microwave-assisted synthesis and bioevaluation of some semicarbazones. Chem Biol Drug Des. 2012;79(6):950–9.

    Article  CAS  Google Scholar 

  25. Singhal M, Paul A, Singh HP, Dubey SK, Songara RK. Synthesis and evaluation of antioxidant activity of semicarbazone derivatives. Int J Pharmaceut Sci Drug Res. 2011;3:150–4.

    CAS  Google Scholar 

  26. Dutta S, Padhye S, Priyadarsini KI, Newton C. Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg Med Chem Lett. 2005;15(11):2738–44.

    Article  CAS  Google Scholar 

  27. Singhal M, Paul A, Singh HP. Synthesis and reducing power assay of methyl semicarbazone derivatives. J Saudi Chem Soc. 2014;18(2):121–7.

    Article  CAS  Google Scholar 

  28. Varatharajan K, Pushparani D. Screening of antioxidant additives for biodiesel fuels. Renew Sustain Energy Rev. 2018;82:2017–28.

    Article  CAS  Google Scholar 

  29. Zhao H, Feng J, Zhu J, Yu H, Liu Y, Shi P, et al. Synthesis and application of highly efficient multifunctional vegetable oil additives derived from biophenols. J Clean Prod. 2020;242:118274.

    Article  CAS  Google Scholar 

  30. Zhang H-Y, Yang D-P, Tang G-Y. Multipotent antioxidants: from screening to design. Drug Discov Today. 2006;11(15–16):749–54.

    Article  CAS  Google Scholar 

  31. Kato T, Ozaki T, Tamura K, Suzuki Y, Akima M, Ohi N. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives. J Med Chem. 1999;42(16):3134–46.

    Article  CAS  Google Scholar 

  32. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA. PASS-assisted design, synthesis and antioxidant evaluation of new butylated hydroxytoluene derivatives. Eur J Med Chem. 2014;87:564–77.

    Article  CAS  Google Scholar 

  33. Nath AR, Yehye WA. Acid hydrazide: a potential reagent for the synthesis of semicarbazones. Synthesis. 2018;50(21):4301–12.

    Article  CAS  Google Scholar 

  34. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;181(4617):1199–200.

    Article  CAS  Google Scholar 

  35. Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123(6):1173–83.

    Article  CAS  Google Scholar 

  36. Lowe W. Lubricating oil antioxidant additive composition. Google Patents; 1979.

  37. Rudnick LR. Lubricant additives: chemistry and applications. Boca Raton: CRC Press; 2017.

    Book  Google Scholar 

  38. Casas J, Garcıa-Tasende M, Sordo J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord Chem Rev. 2000;209(1):197–261.

    Article  CAS  Google Scholar 

  39. Enyedy ÉA, Bognár GM, Nagy NV, Jakusch T, Kiss T, Gambino D. Solution speciation of potential anticancer metal complexes of salicylaldehyde semicarbazone and its bromo derivative. Polyhedron. 2014;67:242–52.

    Article  CAS  Google Scholar 

  40. Dresel W. Lubricants and lubrication. New York: Wiley; 2007.

    Google Scholar 

  41. Waynick JA. The development and use of metal deactivators in the petroleum industry: a review. Energy Fuels. 2001;15(6):1325–40.

    Article  CAS  Google Scholar 

  42. Takao T, Moriya M, Suzuki H. Introduction of a methoxy group into a hydrocarbyl ligand derived from a linear alkane on a triruthenium cluster via chemical oxidation. Organometallics. 2007;27(1):18–20.

    Article  Google Scholar 

  43. O’Keefe CA, Johnston KE, Sutter K, Autschbach J, Gauvin R, Trébosc J, et al. An investigation of chlorine ligands in transition-metal complexes via 35Cl solid-state NMR and density functional theory calculations. Inorg Chem. 2014;53(18):9581–97.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Grand Challenge (GC001C-14AET), PPP Grant PG208-2015B and RU2018 provided by the University of Malaya and Ministry of Higher Education, Malaysia (MOHE) for their cordial support in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wageeh A. Yehye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A.R., Yehye, W.A. & Johan, M.R. Butylated hydroxy benzylidene ring: an important moiety for antioxidant synergism of semicarbazones. J Therm Anal Calorim 146, 2101–2114 (2021). https://doi.org/10.1007/s10973-020-10199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10199-8

Keywords

Navigation