Skip to main content
Log in

Study of deep eutectic solvents (DESs) performance on aromatics (benzene and thiophene) extraction: thermophysical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermophysical properties of some binary mixtures of novel choline chloride-based deep eutectic solvents and two aromatics (benzene and thiophene) were measured to evaluate the nature of solute–solvent interactions at T = (283.15–303.15) K and atmospheric pressure. Choline chloride was selected as hydrogen bond donor and (mono-, di- and tri-) ethylene glycols or (mono-, di- and tri-) ethanolamines were used as hydrogen bond donors. The density (d), speed of sound (u), viscosity (η) and refractive index (nD) data were measured for binary mixtures of benzene or thiophene with the selected DESs at T = (283.15–303.15) K. The apparent molar volume (Vφ), standard partial molar volume (V 0φ ), partial molar isentropic compression (κ 0φ ), excess molar volume (VE), viscosity B-coefficient and molar refraction (RD) values, were obtained for the binary mixtures at dilute region of aromatics. These quantities are used for interpreting of the studied DESs and benzene or thiophene molecular interactions. Also, the scaled particle theory (SPT) was used for calculation of interaction volume (Vint), and cavity volume (Vcav). The obtained results indicate that DESs with amine functional groups interact more effectively with benzene or thiophene rather than ethylene glycolic-based DESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith EL, Abbott AP, Ryder KS. Deep Eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.

    Article  CAS  PubMed  Google Scholar 

  2. LiC X, Row KH. Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. 2016;39:3505–20.

    Article  CAS  Google Scholar 

  3. Tang B, Zhang H, Row KH. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci. 2015;38:1053–64.

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Choi J, Ahn WS, Row KH. Preparation and application of porous materials based on deep eutectic solvents. Rev Anal Chem. 2018;48:73–85.

    Article  CAS  Google Scholar 

  5. Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydr Polym. 2018;180:328–36.

    Article  CAS  PubMed  Google Scholar 

  6. Yucui H, Congfei Y, Weize W. Deep Eutectic solvents: green solvents for separation applications. Acta Phys Chim Sin. 2018;34:0001–9.

    Google Scholar 

  7. Kurnia KA, Athirah NA, Ma FJ, Candieiro M, La B. Phase behavior of ternary mixtures {aliphatic hydrocarbon + aromatic hydrocarbon + deep eutectic solvent}: A STEP FORWARD toward “greener” extraction process. Procedia Eng. 2016;148:1340–5.

    Article  CAS  Google Scholar 

  8. Rodriguez NR, Requejo PF, Kroon MC. Aliphatic–aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res. 2015;54:11404–12.

    Article  CAS  Google Scholar 

  9. Sarmad S, Xie Y, Mikkola JPA, Ji X. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem. 2017;41:290–301.

    Article  CAS  Google Scholar 

  10. Wang Q, Zhang BJ, He C, He CC, Chen QL. Optimal design of a new aromatic extractive distillation process aided by a co-solvent mixture. Energy Proced. 2017;105:4927–34.

    Article  CAS  Google Scholar 

  11. Gil ID, Botia DC, Ortiz P, Sanchez OF. Extractive distillation of acetone/methanol mixture using water as entrainer. Ind Eng Chem Res. 2009;48:4858–65.

    Article  CAS  Google Scholar 

  12. Suppino RS, Gomez AJ. Influence of solvent nature on extractive distillation of the benzene hydrogenation products. Ind Eng Chem Res. 2014;53:16397–405.

    Article  CAS  Google Scholar 

  13. Bondor FS, Lebeis JEH. Extractive distillation of aromatics. US2776936A.

  14. Li G, Yu Y, Bai P. Batch extractive distillation of mixture methanol-acetonitrile using aniline as a solvent. Pol J Chem Technol. 2012;14:48–53.

    Article  CAS  Google Scholar 

  15. Zhu Z, Ri Y, Li M, Jia H, Wang Y, Wang Y. Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chem Eng Process Process Intensif. 2016;109:190–8.

    Article  CAS  Google Scholar 

  16. Gentry JC, Berg L, McIntyre JC, Wytcherley RW. Process to recover benzene from mixed hydrocarbons by extractive distillation. US5399244A.

  17. Acosta J, Rodriguez I, Jauregu D, Nuevas H, Pardillo P. Recovery of acetonitrile from aqueous waste by a combined process: solvent extraction and batch distillation. Sep Purif Technol. 2006;52:95–101.

    Article  CAS  Google Scholar 

  18. van Dyk B, Nieuwoudt I. Design of solvents for extractive distillation. Ind Eng Chem Res. 2000;39:1423–9.

    Article  CAS  Google Scholar 

  19. Meindersma GW, Maldonado EQ, Aelmans TAM, Hernandez JPG, de Haan AB. Ionic liquids in extractive distillation of ethanol/water: from laboratory to pilot plant. ASC Sym Ser. 2012;11:239–57.

    Google Scholar 

  20. Hadj-Kali MK, Salleh Z, Ali E, Khan R, Ali-Hashim M. Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents: a critical review. Fluid Phase Equilibr. 2017;448:152–67.

    Article  CAS  Google Scholar 

  21. Shekaari H, Zafarani-Moattar MT, Niknam M. Thermodynamic behaviour of thiophene with octane, 1-hexyl-3-methylimidazolium, bromide, or 1-octyl-3-methylimidazolium bromide in the dilute region at T = (288.15 to 303.15) K. J Chem Thermodyn. 2016;97:100–12.

    Article  CAS  Google Scholar 

  22. Shekaari H, Zafarani-Moattar MT, Niknam M. Thermodynamic evaluation of imidazolium based ionic liquids with thiocyanate anion as effective solvent to thiophene extraction. J Mol Liq. 2016;219:975–84.

    Article  CAS  Google Scholar 

  23. Diaz I, Rodriguez M, Gonzalez EJ. Selection of a minimum toxicity and high performance ionic liquid mixture for the separation of aromatic–aliphatic mixtures by extractive distillation. Comput Aid Chem Eng. 2017;40:2209–14.

    Article  CAS  Google Scholar 

  24. Kamiya T, Takara E, Ito A. Separation of aromatic compounds from hydrocarbon mnixtures by vapor permeation using liquid membranes with ionic liquids. J Chem Eng Jpn. 2017;50:684–91.

    Article  CAS  Google Scholar 

  25. Larriba M, Ayuso M, Navarro P, Delgado-Mellado N, Gonzalez-Miquel M, Garcia J, Rodriguez F. Choline chloride-based deep eutectic solvents in the dearomatization of gasolines. ACS Sustain Chem Eng. 2018;6:1039–47.

    Article  CAS  Google Scholar 

  26. Shekaari H, Zafarani-Moattar MT, Mohammadi B. Thermophysical characterization of aqueous deep eutectic solvent (choline chloride/urea) mixtures in full ranges of concentration at T = (293.15–323.15) K. J Mol Liq. 2017;243:451–61.

    Article  CAS  Google Scholar 

  27. Shekaari H, Zafarani-Moattar MT, Mohammadi B. Effective extraction of benzene and thiophene by novel deep eutectic solvents from hexane/aromatic mixture at different temperatures. Fluid Phase Equilibr. 2019;484:38–52.

    Article  CAS  Google Scholar 

  28. Pierotti RA. A scaled particle theory of aqueous and nonaqueous mixtures. Chem Rev. 1976;76:717–26.

    Article  CAS  Google Scholar 

  29. Mokhtarpour M, Shekaari H. Measurement and correlation of thermophysical properties in aqueous solutions of some novel bio-based deep eutectic solvents (lactic acid/amino acids) at T = (298.15 to 313.15) K. J Chem Thermodyn. 2020;144:106051. https://doi.org/10.1016/j.jct.2020.106051.

    Article  CAS  Google Scholar 

  30. Fang S, Ren DH. Effect of 1-ethyl-3-methylimidazolium bromide ionic liquid on the volumetric behavior of some aqueous l-amino acids mixtures. J Chem Eng Data. 2013;58:845–50.

    Article  CAS  Google Scholar 

  31. Zhao H. Viscosity B-coefficients and standard partial molar volumes of amino acids and their roles in interpreting the protein (enzyme) stabilization. Biophys Chem. 2006;122:157–83.

    Article  CAS  PubMed  Google Scholar 

  32. Pierotti RA. Aqueous mixtures of nonpolar gases. J Phys Chem. 1965;69:281–8.

    Article  CAS  Google Scholar 

  33. Manin AN, Shmukler LE, Safonova LP, Perlovich GL. Partial molar volumes of some drug and pro-drug substances in 1-octanol at T= 298.15 K. J Chem Thermodyn. 2010;42:429–35.

    Article  CAS  Google Scholar 

  34. van der Bondi A. Waals volumes and radii. J Phys Chem. 1964;68:441–51.

    Article  CAS  Google Scholar 

  35. Zhao YH, Abraham MH, Zissimos AM. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J Org Chem. 2003;68:7368–73.

    Article  CAS  PubMed  Google Scholar 

  36. Cibulka I, Takagi T. P−T Data of liquids: summarization and evaluation miscellaneous compounds. J Chem Eng Data. 2002;47:1037–70.

    Article  CAS  Google Scholar 

  37. Ahmadi A, Haghbakhsh R, Raeissi S, Hemmati V. A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures. Fluid Phase Equilib. 2015;403:95–103.

    Article  CAS  Google Scholar 

  38. Vranes M, Dozic S, Djeric V, Gadzuric S. Volumetric properties of ammonium nitrate in N,N-dimethylformamide. J Chem Thermodyn. 2012;54:245–9.

    Article  CAS  Google Scholar 

  39. Lu XM, Xu WG, Gui JS, Li HW, Yang JZ. Volumetric properties of room temperature ionic liquid 1. The system of 1-methyl-3-ethylimidazolium ethyl sulfate+water at temperature in the range (278.15 to 333.15) K. J Chem Thermodyn. 2005;37:13–9.

    Article  CAS  Google Scholar 

  40. Shekaari H, Bezaatpour A, Elhami-Kalvanagh R. Effect of an ionic liquid on the volumetric behavior of tetradentate N2O2 type Schiff bases in DMF at T = (308.15 to 328.15) K. J Chem Thermodyn. 2012;51:114–9.

    Article  CAS  Google Scholar 

  41. Anouti M, Caillon-Caravanier M, Dridi Y, Jacquemin J, Hardacre C, Lemordant D. Liquid densities, heat capacities, refractive index and excess quantities for protic ionic liquids + water binary system. J Chem Thermodyn. 2009;41:799–808.

    Article  CAS  Google Scholar 

  42. Wisniak J, Cortez G, Peralta RD, Infante R, Elizalde LE, Amaro TA, Garcia O, Soto H. Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K. J Chem Thermodyn. 2008;40:1671–83.

    Article  CAS  Google Scholar 

  43. Reddy PM, Kumar KS, Venkatesu P. Densities and ultrasonic studies for binary mixtures of tetrahydrofuran with chlorobenzenes, chlorotoluenes and nitrotoluenes at 298.15 K. Fluid Phase Equilib. 2011;310:74–81.

    Article  CAS  Google Scholar 

  44. Sadeghi R, Ziamajidi F. Apparent molar volume and isentropic compression of trisodium citrate in water and in aqueous mixtures of polyvinylpyrrolidone at T = (283.15 to 308.15) K. J Chem Eng Data. 2007;52:1037–44.

    Article  CAS  Google Scholar 

  45. Shekaari H, Zafarani-Moattar MT, Mohammadi B. Thermophysical properties of choline chloride/urea deep eutectic solvent in aqueous solution at infinite dilution at T = 293.15–323.15 K. J Therm Anal Calorim. 2020;139:3603–12.

    Article  CAS  Google Scholar 

  46. Zafarani-Moattar MT, Shekaari H, Jafari P. Volumetric, acoustic and viscometric investigation of some choline amino acid ionic liquids in aqueous solutions of polypropylene glycol 400 and polyethylene glycol 400. J Chem Thermodyn. 2020;142:106019. https://doi.org/10.1016/j.jct.2019.106019.

    Article  CAS  Google Scholar 

  47. Bahadur I, Deenadayalu N. Apparent molar volume and isentropic compression for the binary systems methyltrioctylammonium bis(trifluoromethylsulfonyl)imide + methyl acetate or methanol and (methanol + methyl acetate) at T = 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure. J Solut Chem. 2011;40:1528–43.

    Article  CAS  Google Scholar 

  48. Burakowski A, Glinski J. Solvation numbers of alcohols in n-heptane and alcohols in n-propanol diluted liquid mixtures from the acoustic Pasynski method. Chem Phys Lett. 2008;453:178–82.

    Article  CAS  Google Scholar 

  49. Seoane RG, Corderi S, Gomez E, Calvar N, Gonzalez EJ, Macedo EA, Dominguez A. Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind Eng Chem Res. 2012;51:2492–504.

    Article  CAS  Google Scholar 

  50. Tariq M, Forte PAS, Gomes MFC, Lopes JNC, Rebelo LPN. Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn. 2009;41:790–8.

    Article  CAS  Google Scholar 

  51. Alvarado YJ, Ballestas-Barrientos A, Restrepo J, Vera-Villalobos J, Ferrer-Amado G, Rodriguez-Lugo P, Ferrebuz A, Infante M, Cubillan N. Volume-related properties of thiophene and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO: a discussion about non-intrinsic contribution. J Chem Thermodyn. 2015;85:210–5.

    Article  CAS  Google Scholar 

  52. Alvarado YJ, Ballestas-Barrientos A, Restrepo J, Vera-Villalobos J, Ferrer-Amado G, Rodriguez-Lugo P, Ferrebuz A, Infante M, Cubillan N. Volume-related properties of thiophene and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO: a discussion about nonintrinsic contribution. J Chem Thermodyn. 2015;85:210–5.

    Article  CAS  Google Scholar 

  53. Herail M, Le Guennec M, Le Goff D, Proutiere A. Molecular weight determination from light scattering and refraction in mixtures. A new and coherent theoretical equation. J Mol Struct. 1996;380:171–93.

    CAS  Google Scholar 

  54. Fucaloro A. Reporting molar refractions. J Mix Chem. 2002;31:601–5.

    CAS  Google Scholar 

  55. Zhao Q, Sun ZJ, Zhang Q, Xing SK, Liu M, Sun DZ, Li WL. Densities and apparent molar volumes of myo-inositol in aqueous mixtures of alkaline earth metal salts at different temperatures. Thermo Chim Acta. 2009;487:1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to University of Tabriz, Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, B., Shekaari, H. & Zafarani-Moattar, M.T. Study of deep eutectic solvents (DESs) performance on aromatics (benzene and thiophene) extraction: thermophysical study. J Therm Anal Calorim 146, 1695–1707 (2021). https://doi.org/10.1007/s10973-020-10173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10173-4

Keywords

Navigation