Skip to main content
Log in

Fire reaction properties of polystyrene-based composites using hollow silica as synergistic agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hollow silica microsphere (h-SiO2) has been widely applied in the field of thermal insulation, catalyst supports and drug storage/delivery containers. In this research, h-SiO2 has been innovatively used as synergistic agent to enhance the flame retardancy of intumescent flame-retardant polystyrene. The synergistic effects of h-SiO2 on intumescent flame-retardant polystyrene have been studied by limiting oxygen index (LOI), UL-94 test and cone calorimeter test (CCT). When 0.5 mass% h-SiO2 was substituted for the intumescent flame-retardant additive, the LOI of polystyrene composite (PS/IFR/Si0.5) increased by 5 units and the composite preserved the V-0 rating. Manipulation of parameters from CCT indicated that the peak heat release rate was reduced by 27% for the PS/IFR/Si0.5 composite, whereas the total heat release decreased by 14.5% and the ratio of residue increased by 85.6% (from 13.2 to 24.5%) compared to those of the composite without h-SiO2. The synergistic effects of h-SiO2 on intumescent flame-retardant polystyrene are attributed to physical and chemical processes in the condensed phase. The morphologies of charred layer after CCT proved that h-SiO2 induced compact charred layer with enhanced thermal and gas barrier effect, which in turn protected the inner matrix from combustion and decreased specific extinction area by 24.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Kerekes Z, Restás Á, Lublóy É. The effects causing the burning of plastic coatings of fire-resisitant cables and its consequences. J Therm Anal Calorim. 2020;139(2):775–87.

    Article  CAS  Google Scholar 

  2. Vuluga Z, Panaitescu DM, Sanporena CG, Radovici C, Gabor R, Nicolae CA, Corobea MC, Iorga M, Florea D. The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocomposites. J Alloys Comp. 2014;616:569–76.

    Article  CAS  Google Scholar 

  3. Wang Y, Jiang H, Ni J, Chen J, Zhou H, Wang X, Xin F. Study on the effect of polyFR and its FR system on the flame retardancy and foaming behavior of polystyrene. RSC Adv. 2019;9:192–205.

    Article  CAS  Google Scholar 

  4. Wang Y, Zhao J. Comparative study on flame retardancy of silica fume-based geopolymer activated by different activators. J Alloys Comp. 2018;743:108–14.

    Article  CAS  Google Scholar 

  5. Attia NF, Saleh BK. Nover synthesis of renewable and green flame-retardant, antibacterial and reinforcement materials for styrene-butadiene rubber nanocomposites. J Therm Anal Calorim. 2020;139(3):1817–27.

    Article  CAS  Google Scholar 

  6. Xu Y, Lv C, Shen R, Wang Z, Wang Q. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2019;136(3):1237–47.

    Article  CAS  Google Scholar 

  7. Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C. Distribution and fate of HBCD and TBBPA brominated flame retardants in north sea estuaries and aquatic food webs. Environ Sci Technol. 2004;38:5497–504.

    Article  CAS  Google Scholar 

  8. Poma G, Roscioli C, Guzzella L. PBDE, HBCD and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environ Monit Assess. 2014;186:7683–92.

    Article  CAS  Google Scholar 

  9. Zhang H, Kuo YY, Gerecke AC, Wang J. Co-release of hexabromocyclododecane (HBCD) and nano- and microparticles from thermal cutting of polystyrene foams. Environ Sci Technol. 2012;46:10990–6.

    Article  CAS  Google Scholar 

  10. Beach MW, Rondan NG, Froese RD, Gerhart BB, Green JG, Stobby BG. Studies of degradation enhancement of polystyrene by flame retardant additives. Polym Degrad Stabil. 2008;93:1664–73.

    Article  CAS  Google Scholar 

  11. Law RJ, Kohler M, Heeb NV, Gerecke AC, Schmid P, Voorspoels S, Covaci A, Becher G, Janák K, Thomsen C. Hexabromocyclododecane challenges scientists and regulators. Environ Sci Technol. 2005;39:281A–7A.

    Article  CAS  Google Scholar 

  12. Schütz MR, Kalo H, Lunkenbein T, Breu J, Wilkie CA. Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer. 2011;52:3288–94.

    Article  CAS  Google Scholar 

  13. Kim H, Park JW, Lee JH, Jang SW, Kim HJ, Choi Y. Clay-organic intumescent hybrid system for the synergetic flammability of polymer nanocomposites. J Therm Anal Calorim. 2018;132:2009–14.

    Article  CAS  Google Scholar 

  14. Lu H, Wilkie CA. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym Degrad Stabil. 2010;95:2388–95.

    Article  CAS  Google Scholar 

  15. Ahmed L, Zhang B, Shen RQ, Agnew RJ, Park H, Cheng ZD, Mannan MS. Fire reaction properties of polystyrene-based nanocomposites using nanosilic and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132:1853–65.

    Article  CAS  Google Scholar 

  16. Zhou KQ, Gui Z, Hu Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A Appl S. 2016;80:217–27.

    Article  CAS  Google Scholar 

  17. Durkin DP, Gallagher MJ, Frank BP, Knowlton ED, Trulove PC, Fairbrother DH, Fox DM. Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate). J Therm Anal Calorim. 2017;130:735–53.

    Article  CAS  Google Scholar 

  18. Liu L, Xu XX. Polystyrene nanocomposites with improved combustion properties by using TMA-POSS and organic clay. J Therm Anal Calorim. 2016;214:743–9.

    Article  CAS  Google Scholar 

  19. Gilman JW, Jackson CL, Borgan AB, Harris R. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.

    Article  CAS  Google Scholar 

  20. Chen YJ, Zhan J, Zhang P, Nie SB, Lu HD, Song L, Hu YA. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res. 2010;49:8200–8.

    Article  CAS  Google Scholar 

  21. Gong J, Tian NN, Wen X, Chen XC, Liu J, Jiang ZW. Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). Polym Degrad Stabil. 2014;104:18–27.

    Article  CAS  Google Scholar 

  22. Shen RQ, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang QS. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.

    Article  CAS  Google Scholar 

  23. Chigwada G, Kandare E, Wang D, Majoni S, Mlambo D, Wilkie CA. Thermal stability and degradation kinetics of polystyrene/organically-modified montmorillonite nanocomposites. J Nanosci Nanotechnol. 2008;8:1927–36.

    Article  CAS  Google Scholar 

  24. Kashiwagi T, Shields JR, Harris RH, Davis RD. Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci. 2003;87:1541–53.

    Article  CAS  Google Scholar 

  25. Ye L, Wu QH, Qu BJ. Synergistic effects of fumed silica on intumescent flame-retardant polypropylene. J Appl Polym Sci. 2000;115:3508–15.

    Article  CAS  Google Scholar 

  26. Jia Z, Wang Z, Hwang D, Wang LF. Prediction of the effective thermal conductivity of hollow sphere foams. ACS Appl Energy Mater. 2018;1:1146–57.

    Article  CAS  Google Scholar 

  27. Umegaki T, Katori H, Otake K, Yamamoto R, Kojima Y. Fabrication of copper supported on hollow silica-alumina composite spheres for catalytic decomposition of nitrous oxide. J Sol Gel Sci Technol. 2019;92:715–22.

    Article  CAS  Google Scholar 

  28. Rahman ZU, Wei N, Li ZX, Sun WX, Wang DA. Preparation of hollow mesoporous silica nanospheres: controllable template synthesis and their application in drug delivery. New J Chem. 2017;41:14122–9.

    Article  CAS  Google Scholar 

  29. Schartel B, Hull TR. Development of fire retardant materials-interpretation of cone calorimeter data. Fire Mater. 2007;31:27–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Natural Science Foundation of Heilongjiang Province (YQ2019E030) and Foundation for Universities of Heilongjiang Province (LGYC2018JC032).

Funding

This study was funded by Natural Science Foundation of Heilongjiang Province (YQ2019E030) and Foundation for Universities of Heilongjiang Province (LGYC2018JC032).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZH finished the experimental design. Material preparation, data collection and analysis were performed by XM, HS and CW. The first draft of the manuscript was written by YW and XM.

Corresponding author

Correspondence to Yongliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Meng, X., Wang, C. et al. Fire reaction properties of polystyrene-based composites using hollow silica as synergistic agent. J Therm Anal Calorim 146, 1679–1686 (2021). https://doi.org/10.1007/s10973-020-10165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10165-4

Keywords

Navigation