Skip to main content
Log in

A DSC study of new compounds based on (E)-3-(azulen-1-yldiazenyl)-1,2,5-oxadiazole

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Exothermal decomposition of six (E)-(substituted azulen-1-yldiazenyl-1,2,5-oxadiazoles) was investigated by differential scanning calorimetry (DSC) under non-isothermal conditions, in inert atmosphere. From the DSC curves recorded either at various heating rates for three compounds, or at 10 K min−1 for the rest, several physical properties such as the melting temperature, melting heat, temperature and heat of decomposition were evaluated. The activation parameters of the decomposition processes were determined by analyzing their multiple curves, measured at different heating rates, using both the Friedman and Flynn–Wall–Ozawa isoconversional methods and model-fitting methods. The linear dependence of the activation energy on conversion supports the idea of the single-step nature of the decomposition processes for all examined compounds. The decomposition steps were identified from the experimental DSC curves, and their kinetic parameters were evaluated using linear regression methods. New insight into the relationship between melting and structural properties was gained if the equilibrium free energy of melting was splitted into its energetic and entropic components. The resulted thermodynamic and kinetic parameters are used to predict the hazards associated with these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vogel K, Widmann G. Investigating safety aspects by thermal analysis. J Therm Anal Calorim. 1989;35:329–34.

    Article  CAS  Google Scholar 

  2. Grewer Th, Frurip DJ, Harrison BK. Prediction of thermal hazards of chemical reactions. J Loss Prev Proc Ind. 1999;12:391–8.

    Article  Google Scholar 

  3. Li C, Ma F, Sun J, Sui H, Yu Q, Zhao L, Yin Y. Thermal hazard evaluation of N-guanylurea dinitramide (GUDN) y using kinetic-based simulation approach. J Therm Anal Calorim. 2020;141:905–13.

    Article  CAS  Google Scholar 

  4. Ding J, Yu L, Wang X, Xu Q, Yang S, Ye S, Jiang J. A kinetic-based approach in acelerating rate calorimetry with the varyuing thermal inertia consideration. J Therm Anal Calorim. 2020;141:783–96.

    Article  CAS  Google Scholar 

  5. Pan Y, Qi R, He P, Shen R, Jiang J, Ni L, Jiang J, Wang Q. Thermal hazard assesment ad ranking for organic peroxides using quantitative structure-property relationship approaches. J Therm Anal Calorim. 2020;140:2575–83.

    Article  CAS  Google Scholar 

  6. Liu SH, Yu CF, Das M. Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2020;140:2325–36.

    Article  CAS  Google Scholar 

  7. Höhne G, Hemminger W, Flammersheim HJ. Differential Scanning Calorimetry. (ed.) Springer, Berlin; 1996.

  8. Mage L, Baati N, Nanchen A, Stoessel F, Meyer Th. A systematic approach for thermal stability predictions of chemicals and their risk assessment: pattern recognition and compounds classification based on thermal decomposition curves. Proc Saf Environm Prot. 2017;110:43–52.

    Article  CAS  Google Scholar 

  9. Fu Z, Su R, Wang Y, Wang YF, Zeng W, Xiao N, Wu Y, Zhou Z, Chen J, Chen FX. Synthesis and characterization of energetic 3-Nitro-1, 2, 4-oxadiazoles. Chem Eur J. 2012;18:1886–9.

    Article  CAS  Google Scholar 

  10. Fu Z, Wang Y, Yang L, Su R, Chen J, Nie F, Huang J, Chen FX. Synthesis and characteristics of novel, high-nitrogen 1, 2, 4-oxadiazoles. RSC Adv. 2014;4:11859–61.

    Article  CAS  Google Scholar 

  11. Zhang J, Shreeve JM. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N − O building blocks for high-performance energetic materials. J Am Chem Soc. 2014;136:4437–45.

    Article  CAS  Google Scholar 

  12. Wei H, He C, Zhang J, Shreeve JM. Combination of 1,2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high-performance energetic materials. Angew Chem Intern Ed. 2015;l54:9367–71.

    Article  Google Scholar 

  13. Klapötke TM, Witkowski TG. Nitrogen-rich energetic 1, 2, 5-oxadiazole-tetrazole–based energetic materials. Propellants, Explos, Pyrotech. 2015;40:366–73.

    Article  Google Scholar 

  14. Liu Y, Zhang J, Wang K, Li J, Zhang Q, Shreeve JM. Bis(4-nitraminofurazanyl-3-azoxy) azofurazan and derivatives: 1,2,5-oxadiazole structures and high-performance energetic materials. Angew Chem Intern Ed. 2015;55:11548–51.

    Article  Google Scholar 

  15. Whelan DJ, Fitzgerald MR. The thermal decomposition of 2,5-dipicryl-1,3,4-oxadiazole, near its ignition temperature: an isothermal DSC study. J Energ Mater. 1994;12:181–95.

    Article  CAS  Google Scholar 

  16. Wei H, Zhang J, He C, Shreeve JM. Energetic salts based on furazan-functionalized tetrazoles: routes to boost energy. Chem Eur J. 2015;21:8607–12.

    Article  CAS  Google Scholar 

  17. Razus AC, Birzan L, Cristea M, Tecuceanu V, Draghici C. New (azulen-1-yldiazenyl)-heteroaromatic compounds containing 1,2,5-oxadiazol-3-yl moieties. Rev Chim. 2015;66:1074–82.

    CAS  Google Scholar 

  18. Flammersheim HJ, Opfermann JR. Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions. Thermochim Acta. 2002;388:389–400.

    Article  CAS  Google Scholar 

  19. Opfermann J. Kinetic analysis using multivariate non-linear regression I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  20. Musuc AM, Razus D, Oancea D. Thermal stabilities of new synthesized N-methoxypolynitroanilines derivatives. J Therm Anal Calorim. 2009;98:779–84.

    Article  CAS  Google Scholar 

  21. Pandele Cusu J, Musuc AM, Matache M, Oancea D. Kinetics of exothermal decomposition of some ketone-2,4-dinitrophenylhydrazones. J Therm Anal Calorim. 2012;110:1259–66.

    Article  CAS  Google Scholar 

  22. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry applications to a phenol plastic. J Polym Sci. 1963;6C:183–95.

    Google Scholar 

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  25. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  26. Alder R, Whittaker G. The thermal rearrangements of azulenes to naphthalenes. J Chem Soc Perkin Trans. 1975;2:714–23.

    Article  Google Scholar 

  27. Asato A, Liu R. Azulene-containing donor-acceptor compounds as second-order nonlinear chromophores. Tetrahedron Lett. 1996;37:419–22.

    Article  CAS  Google Scholar 

  28. Pandele Cusu J, Musuc AM, Oancea D. Thermal stabilities of some benzaldehyde 2,4-dinitrophenylhydrazones. J Therm Anal Calorim. 2012;109:123–9.

    Article  Google Scholar 

  29. Chickos JS, Acree WE Jr, Liebman JF. Estimating solid-liquid phase change enthalpies and entropies. J Phys Chem Ref Data. 1999;28:1535–673.

    Article  CAS  Google Scholar 

  30. Pandele Cusu J, Musuc AM, Oancea D. Thermal decomposition of new aldehyde-2,4-dinitrophenylhydrazone: kinetic studies and thermal hazard predictions. Thermochim Acta. 2020;689:178610.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  32. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

  33. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:210–21.

    Article  Google Scholar 

  34. Koga N, Tanaka H. Conventional kinetic analysis of the thermogravimetric curves for the thermal decomposition of a solid. Thermochim Acta. 1991;183:125–36.

    Article  CAS  Google Scholar 

  35. Mandel J, The statistical analysis of experimental data. Interscience, New York. 1984. Chap. 6–7.

  36. Marinoiu V, Stratula C, Petcu A, Patrascioiu C, Marinescu C, Metode numerice aplicate in ingineria chimica (Numerical Methods Applied in Chemical Engineering). Ed. Tehnica, Bucharest, 1986.

  37. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics. 22nd ed. Amsterdam: Elsevier; 1980.

    Google Scholar 

  38. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Intern Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was partially financed by the Romanian Academy under research project “Dynamics of fast oxidation and decomposition reactions in homogeneous systems” of “Ilie Murgulescu” Institute of Physical Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina Magdalena Musuc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musuc, A.M., Birzan, L., Cristea, M. et al. A DSC study of new compounds based on (E)-3-(azulen-1-yldiazenyl)-1,2,5-oxadiazole. J Therm Anal Calorim 146, 1763–1772 (2021). https://doi.org/10.1007/s10973-020-10164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10164-5

Keywords

Navigation