Skip to main content
Log in

Cure and thermal decomposition kinetics of a DGEBA/amine system modified with epoxidized soybean oil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, epoxidized soybean oil (ESO) was added to a typical diglycidyl ether of bisphenol A (DGEBA) epoxy resin system with an amine curing agent, and the cure and thermal decomposition kinetics of the epoxy resin system were investigated by thermal analyses. ESO content in the epoxy resin system was changed up to 30%, and the stoichiometric amount of ethylene diamine was used. DSC was used for cure kinetics analysis, and TGA was used for thermal decomposition kinetics analysis. FTIR was used to check the completeness of the polymerization reaction of the cured epoxy resin samples for TGA. With increasing ESO content, cure rate decreased and the beginning temperature of thermal decomposition lowered. The cure and thermal decomposition kinetics of the epoxy resin system could be successfully analyzed by the autocatalytic reaction mechanism and the Ozawa method respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rabearison N, Jochum C, Grandidier JC. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J Mater Sci. 2011;46(3):787–96.

    CAS  Google Scholar 

  2. Park SM, Kim DS. Curing behavior and physical properties of an epoxy nanocomposite with amine-functionalized graphene nanoplatelets. Compos Interfaces. 2016;23(7):675–87.

    CAS  Google Scholar 

  3. Ren H, Tang S, Syed JA, Meng X. A naphthyl-imide-based epoxy resin: cure kinetics and application in carbon fiber reinforced composites. High Perform Polym. 2012;24(7):580–8.

    CAS  Google Scholar 

  4. Kim DS, Kim SC. Rubber modified epoxy resin I: cure kinetics and chemorheology. Polym Eng Sci. 1994;34(8):625–31.

    CAS  Google Scholar 

  5. Roudsari GM, Misra M, Mohanty AK. A study of mechanical properties of biobased epoxy network: effect of addition of epoxidized soybean oil and poly (furfuryl alcohol). J Appl Polym Sci. 2017;134(1):4435219.

    Google Scholar 

  6. Liu R, Zhang X, Gao S, Liu X, Wang Z, Yan J. Bio-based epoxy-anhydride thermosets from six-armed linoleic acid-derived epoxy resin. RSC Adv. 2016;6(58):52549–55.

    CAS  Google Scholar 

  7. Karger-Kocsis J, Grishchuk S, Sorochynska L, Rong MZ. Curing, gelling, thermomechanical, and thermal decomposition behaviors of anhydride cured epoxy (DGEBA)/epoxidized soybean oil compositions. Polym Eng Sci. 2014;54(4):747–55.

    CAS  Google Scholar 

  8. Tan SG, Ahmad Z, Chow WS. Relationships of cure kinetics and processing for epoxidized soybean oil bio-thermoset. Ind Crops Prod. 2013;43:378–85.

    CAS  Google Scholar 

  9. Zhu J, Chandrashekhara K, Flanigan V, Kapila S. Curing and mechanical characterization of a soy-based epoxy resin system. J Appl Polym Sci. 2014;91(6):3513–8.

    Google Scholar 

  10. Saurabh T, Patnaik M, Bhagt SL, Renge VC. Epoxidation of vegetable oils: a review. Int J Adv Eng Technol. 2011;2(4):491–501.

    Google Scholar 

  11. Xu K, Li C, Wang C, Jiang Y, Ya Y, Xie H. Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks. J Therm Anal Calorim. 2019;137:1189–98.

    CAS  Google Scholar 

  12. Wuzella G, Mahendran AR, Beuc C, Lammer H. Isoconversional cure kinetics of a novel thermosetting resin based on linseed oil. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09529-7.

    Article  Google Scholar 

  13. Niedermann P, Szebényi G, Toldy A. Effect of epoxidized soybean oil on curing, rheological, mechanical and thermal properties of aromatic and aliphatic epoxy resins. J Polym Environ. 2014;22(4):525–36.

    CAS  Google Scholar 

  14. Kumar S, Samal SK, Mohanty S, Nayak SK. Epoxidized soybean oil-based epoxy blend cured with anhydride-based cross-linker: Thermal and mechanical characterization. Ind Eng Chem Res. 2017;56(3):687–98.

    CAS  Google Scholar 

  15. Kumar S, Samal SK, Mohanty S, Nayak SK. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim Acta. 2017;654:112–20.

    CAS  Google Scholar 

  16. Kumar S, Samal SK, Mohanty S, Nayak SK. Curing kinetics of bio-based epoxy resin-toughened DGEBA epoxy resin blend. J Therm Anal Calorim. 2019;137:1567–78.

    CAS  Google Scholar 

  17. Gupta AP, Ahmad S, Dev A. Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polym Eng Sci. 2011;51(6):1087–91.

    CAS  Google Scholar 

  18. Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A. 2004;374(1–2):109–14.

    Google Scholar 

  19. Han WH, Lee SM. Properties of epoxidized soybean oil modified epoxy resins: chemorheology and cure kinetics. Polym Korea. 2018;42(3):485–91.

    CAS  Google Scholar 

  20. Lee SM. Properties of epoxidized soybean oil modified epoxy resins 2: thermal, mechanical, and morphological Properties. Polym Korea. 2018;42(3):498–503.

    CAS  Google Scholar 

  21. Roudsari GM, Mohanty AK, Misra M. Study of the curing kinetics of epoxy resins with biobased hardener and epoxidized soybean oil. ACS Omega. 2014;2(9):2111–6.

    Google Scholar 

  22. Seo KS, Kim DS. Curing behavior and structure of an epoxy/clay nanocomposite system. Polym Eng Sci. 2006;46(9):1318–25.

    CAS  Google Scholar 

  23. Choi WJ, Powell RL, Kim DS. Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes. Polym Compos. 2009;30(4):415–21.

    CAS  Google Scholar 

  24. Altuna FI, Espósito LH, Ruseckaite RA, Stefani PM. Thermal and mechanical properties of anhydride cured epoxy resins with different contents of biobased epoxidized soybean oil. J Appl Polym Sci. 2011;120(2):789–98.

    CAS  Google Scholar 

  25. Gerbase AE, Gregório JR, Martinelli M, Brasil MC, Mendes AN. Epoxidation of soybean oil by the methyltrioxorhenium—CH2Cl2/H2O2 catalytic biphasic system. J Am Oil Chem Soc. 2002;79(2):179–81.

    CAS  Google Scholar 

  26. Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym Eng Sci. 1973;13(1):59–64.

    CAS  Google Scholar 

  27. Subbiah R, Tjong J, Nayak SK, Sain M. Cure kinetics characterization of soy-based epoxy resins for infusion moulding process. Can J Chem Eng. 2016;94(7):1375–80.

    CAS  Google Scholar 

  28. Park SJ, Cho MS, Lee JR. Isothermal cure kinetics of DGEBA epoxy resins initiated by thermal latent cationic curing agents containing hexafluorophosphate. Polym Korea. 1999;23(3):413–20.

    CAS  Google Scholar 

  29. Kwon HJ, Park HJ, Lee EJ, Ku SM, Kim SH, Lee KY. Study of the curing reaction rate of a glass fiber reinforced bisphenol-A (BPA) epoxy prepreg by differential scanning calorimetry (DSC). Compos Res. 2018;31(1):30–6.

    Google Scholar 

  30. Cherdoud-Chihani A, Mouzali M, Abadie MJM. Study of crosslinking AMS/DGEBA system by FTIR. J Appl Polym Sci. 1998;69(6):1167–78.

    CAS  Google Scholar 

  31. Sahoo SK, Mohanty S, Nayak SK. Toughened bio-based epoxy blend network modified with transesterified epoxidized soybean oil: synthesis and characterization. RSC Adv. 2015;5(18):13674–91.

    CAS  Google Scholar 

  32. Benson SW. III-Bond energies. J Chem Educ. 1965;42(9):502.

    CAS  Google Scholar 

  33. Kerr JA. Bond dissociation energies by kinetic methods. Chem Rev. 1966;66(5):465–500.

    CAS  Google Scholar 

  34. Monteserín C, Blanco M, Aranzabe E, Aranzabe A, Vilas JL. Effects of graphene oxide and chemically reduced graphene oxide on the curing kinetics of epoxy amine composites. J Appl Poly Sci. 2017;134(19):448031(1-3).

    Google Scholar 

  35. Agag T, Takeichi T. Synthesis and characterization of epoxy film cured with reactive polyimide. Polymer. 1999;40(23):6557–633.

    CAS  Google Scholar 

  36. Ma S, Liu W, Zhao Y, Yan Z, Gao N. Curing behavior and thermal properties of autocatalytic cycloaliphatic epoxy. J Macromol Sci A. 2012;49(1):81–4.

    CAS  Google Scholar 

  37. Chen Y, Yang L, Wu J, Ma L, Finlow DE, Lin S, Song K. Thermal and mechanical properties of epoxy resin toughened with epoxidized soybean oil. J Thermal Anal Calorim. 2013;113:939–45.

    CAS  Google Scholar 

  38. Lee JY, Shim MJ, Kim SW. Thermal decomposition kinetics of an epoxy resin with rubber-modified curing agent. J Appl Polym Sci. 2001;81(2):479–85.

    CAS  Google Scholar 

  39. Macan J, Brnardić I, Orlić S, Ivanković H, Ivanković M. Thermal degradation of epoxy–silica organic–inorganic hybrid materials. Polym Degrad Stab. 2006;91(1):122–7.

    CAS  Google Scholar 

  40. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    CAS  Google Scholar 

  41. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci C Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  42. Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates: corrections for the Doyle approximation. J Thermal Anal Calorim. 1983;27(1):95–102.

    CAS  Google Scholar 

  43. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.

    CAS  Google Scholar 

  44. Park JJ. Cure and thermal degradation kinetics of epoxy/organoclay nanocomposite. Trans Electr Electron Mater. 2012;13(4):204–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, Y.J., Kim, D.S. Cure and thermal decomposition kinetics of a DGEBA/amine system modified with epoxidized soybean oil. J Therm Anal Calorim 144, 119–126 (2021). https://doi.org/10.1007/s10973-020-10159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10159-2

Keywords

Navigation