Skip to main content
Log in

Crystallization of UHMWPE nanocomposites filled by multi-wall carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to study the effect of MWCNTs on the crystallization of UHMWPE, the UHMWPE nanocomposites filled by MWCNTs with high content were prepared by solution method. The non-isothermal and isothermal crystallization of MWCNTs/UHMWPE nanocomposites were studied by differential scanning calorimetry and X-ray diffraction. The results showed that the heterogeneous nucleation of MWCNTs increases the crystallization temperature and crystallinity of UHMWPE filled by MWCNTs below 40 mass% with the increase in MWCNTs content in the non-isothermal crystallization process. However, addition of MWCNTs above 40 mass% reduces the crystallization temperature and crystallinity of UHMWPE with the increase in MWCNTs content. The crystallization kinetics of UHMWPE nanocomposites filled by high MWCNTs content can be described by Jeziorny, Mo and Avrami model. The increase in MWCNTs content decreases the crystallization rate of UHMWPE in the non-isothermal crystallization process. For the isothermal crystallization process, although addition of MWCNTs increases the crystallization rate of UHMWPE, the crystallization rate of UHMWPE also decreases with the increase in MWCNTs content. Above results are discussed based on the combined action of heterogeneous nucleation of MWCNTs and the macromolecular chains of UHMWPE confined on the surface of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Enqvist E, Ramanenka D, Marques PAAP, Gracio J, Emami N. The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene filled with multiwalled carbon nanotubes. Polym Compos. 2016;37:1128–36.

    Article  CAS  Google Scholar 

  2. Yin XC, Li S, He GJ, Feng YH, Wen JS. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation. Ultrason Sonochem. 2018;43:15–22.

    Article  CAS  Google Scholar 

  3. Kharitonov AP, Maksimkin AV, Mostovaya KS, Kaloshkin SD, Gorshenkov MV, D’yachkova TP, Tkachev AG, Alekseiko LN. Reinforcement of bulk ultrahigh molecular weight polyethylene by fluorinated carbon nanotubes insertion followed by hot pressing and orientation stretching. Compos Sci Technol. 2015;120:26–31.

    Article  CAS  Google Scholar 

  4. Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer. 2003;44:5643–54.

    Article  CAS  Google Scholar 

  5. Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F. Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer. 2017;111:204–13.

    Article  CAS  Google Scholar 

  6. Manoj KR, Sharma SK, Manoj KBV, Lahiri D. Effects of carbon nanotube aspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite. Composites Part A Appl Sci Manuf. 2015;76:62–72.

    Article  Google Scholar 

  7. Isaji S, Bin YZ, Matsuo M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer. 2009;50:1046–53.

    Article  CAS  Google Scholar 

  8. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J. 2007;43:949–58.

    Article  CAS  Google Scholar 

  9. Pang H, Yan DX, Bao Y, Chen JB, Chen C, Li ZM. Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. J Mater Chem. 2012;22:23568–75.

    Article  CAS  Google Scholar 

  10. Suñer S, Bladen CL, Gowland N, Tipper JL, Emami N. Investigation of wear and wear particles from a UHMWPE/multi-walled carbon nanotube nanocomposite for total joint replacements. Wear. 2014;317:163–9.

    Article  Google Scholar 

  11. Liu YM, Sinha SK. Wear performances and wear mechanism study of bulk UHMWPE composites with nacre and CNT fillers and PFPE overcoat. Wear. 2013;300:44–54.

    Article  CAS  Google Scholar 

  12. Azam MU, Samad MA. UHMWPE hybrid nanocomposite coating filled with nanoclay and carbon nanotubes for tribological applications under water with/without abrasives. Tribol Int. 2018;124:145–55.

    Article  CAS  Google Scholar 

  13. Ren PG, Hou SY, Ren F, Zhang ZP, Sun ZF, Xu L. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN + MWCNT) hybrid composites with segregated structure. Compos Part A Appl Sci Manuf. 2016;90:13–21.

    Article  CAS  Google Scholar 

  14. Shariati J, Saadatabadi AR, Khorasheh F. Thermal degradation behavior and kinetic analysis of ultra high molecular weight polyethylene based multi-walled carbon nanotube nanocomposites prepared via in situ polymerization. J Macromol Sci Part A Pure Appl Chem. 2012;49:749–57.

    Article  CAS  Google Scholar 

  15. Li A, Wu Z, Zhang Z, Kancheng M. Preparation and characterization of UHMWPE composites with high content of multi-wall carbon nanotubes. Polym Compos. 2020. https://doi.org/10.1002/pc.25512.

    Article  Google Scholar 

  16. Lombardo G, Bracco P, Thornhill TS, Bellare A. Crystallization pathways to alter the nanostructure and tensile properties of non-irradiated and irradiated, vitamin e stabilized UHMWPE. Eur Polym J. 2016;75:354–62.

    Article  CAS  Google Scholar 

  17. Parasnis NC, Ramani K. Non-isothermal crystallization of UHMWPE. J Therm Anal Calorim. 1999;55:709–19.

    Article  CAS  Google Scholar 

  18. Guo CY, Sun F, Ling RG, Yao JM, Zhang ZX, Zhang GQ. Crystallization and stress relaxation behaviors of UHMWPE/CNT fibers. J Vinyl Add Technol. 2018;24:229–32.

    Article  CAS  Google Scholar 

  19. Sattari M, Mirsalehi SA, Khavandi A, Alizadeh O, Naimi-Jamal MR. Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J Therm Anal Calorim. 2015;122:1319–30.

    Article  CAS  Google Scholar 

  20. Zhang XQ, Tan YB, Li YH, Zhang GZ. Effect of OMMT on microstructure, crystallisation and rheological behaviour of UHMWPE/PP nanocomposites under elongation flow. Plast Rub Compos. 2018;47:315–23.

    Article  Google Scholar 

  21. Yin XC, Li Y, He GJ, Feng YH, Wen JS. Dispersion of carbon nanotubes in ultrahigh-molecular-weight polyethylene by melt mixing dominated by elongation stress. Polym Int. 2018;67:577–87.

    Article  CAS  Google Scholar 

  22. Xu GY, Zhu QR. Studies on crystallization and melting behaviors of MWCNTs/UHMWPE nanocomposites with reduced chain entanglements. Polym Polym Compos. 2017;25:495–506.

    CAS  Google Scholar 

  23. Xu GY, Zhuang YL, Xia R, Cheng JY, Zhang YC. Carbon nanotubes induced nonisothermal crystallization of ultrahigh molecular weight polyethylene with reduced chain entanglements. Mater Lett. 2012;89:272–5.

    Article  CAS  Google Scholar 

  24. Lim JY, Kim J, Kim S, Kwak S, Lee Y, Seo Y. Nonisothermal crystallization behaviors of nanocomposites of poly(vinylidene fluoride) and multiwalled carbon nanotubes. Polymer. 2015;62:11–8.

    Article  CAS  Google Scholar 

  25. Wang GL, Guo BH, Xu J, Li R. Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci. 2011;121:59–67.

    Article  CAS  Google Scholar 

  26. Yarici T, Kodal M, Ozkoc G. Non-isothermal crystallization kinetics of Poly(Butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes. Polymer. 2018;146:361–77.

    Article  CAS  Google Scholar 

  27. Mayoral B, Hornsby PR, McNally Tony S, Tara L, Jack K, Martin D. Quasi-solid state uniaxial and biaxial deformation of PET/MWCNT composites: structural evolution, electrical and mechanical properties. RSC Adv. 2013;3:5162–83.

    Article  CAS  Google Scholar 

  28. Aoyama S, Park YT, Ougizawa T, Macosko CW. Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer. 2014;55:2077–85.

    Article  CAS  Google Scholar 

  29. Terzopoulou Z, Patsiaoura D, Papageorgiou DG, Pavlidou E, Chrissafis K, Tzounis L, Papageorgiou GZ, Bikiaris DN. Effect of MWCNTs and their modification on crystallization and thermal degradation of poly(butylene naphthalate). Thermoch Acta. 2017;656:59–69.

    Article  CAS  Google Scholar 

  30. Gupta A, Choudhary V. Isothermal crystallization kinetics of poly(trimethylene terephthalate)/multiwall carbon nanotubes composites. J Therm Anal Calorim. 2013;114:643–51.

    Article  CAS  Google Scholar 

  31. Ribeiro B, Hein LRO, Costa ML, Pötschke P, Burkhart T, Botelho EC. Nonisothermal crystallization kinetic study and thermal stability of multiwalled carbon nanotube reinforced poly(phenylene sulfide) composites. Polym Compos. 2017;38:604–15.

    Article  CAS  Google Scholar 

  32. Quan H, Zhang SJ, Qiao JL, Zhang LY. The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes. Polymer. 2012;53:4547–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Zishou or Mai Kancheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zexiong, W., Anqi, L., Zishou, Z. et al. Crystallization of UHMWPE nanocomposites filled by multi-wall carbon nanotubes. J Therm Anal Calorim 146, 2223–2232 (2021). https://doi.org/10.1007/s10973-020-10151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10151-w

Keywords

Navigation