Skip to main content
Log in

NiO reduction by Mg + C combined reducer at high heating rates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mechanism and kinetics of nickel oxide reduction by Mg + C combined reducer at non-isothermal conditions in a wide range of high heating rates (100–1200 °C min−1) were studied by high-speed temperature scanner technique. It was shown that both the magnesiothermal and magnesiocarbothermal reduction processes, unlike low heating rates (5–20 °C min−1, DTA/DTG method), start beyond the melting point of magnesium and proceed via solid + liquid scheme. It was found out that the utilization of Mg + C combined reducer allows to significantly lower the reduction temperature (by about 200–400 °C) of nickel oxide as compared with exclusively magnesium or carbon reducers evidencing on the synergetic effect of combined reducers in the ternary mixture. The effective values of activation energy (Ea) for the NiO + Mg and 2NiO + Mg + C reactions were determined to be 185 ± 15 kJ mol−1 and 195 ± 15 kJ mol−1, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaleel MA, Gurji EZ. The tribological and chemical properties of Ni–W alloy electrodeposition. JAARU. 2019;26(1):145–9.

    Article  Google Scholar 

  2. Al-Sahli A, Ghanbari E, Macdonald DD. Effect of tungsten alloying on passivity breakdown of nickel. Mater Corros. 2019;70:216–33.

    Article  CAS  Google Scholar 

  3. Sheng J, Yi X, Li F, Fang W. Effects of tungsten on the catalytic activity of Ni–W catalysts for the hydrogenation of aromatic hydrocarbons. React Kinet Mech Catal. 2010;99:371–9.

    CAS  Google Scholar 

  4. Sadat T, Faurie D, Tingaud D, Mocuta C, Thiaudiere D, Dirras G. Fracture behavior of Ni–W alloy probed by in situ synchrotron X-ray diffraction. Mater Lett. 2018;239:116–9.

    Article  CAS  Google Scholar 

  5. Hamidi AG, Arabi H, Khakic JV. Sintering of a nano-crystalline tungsten heavy alloy powder. Int J Refract Met Hard Mater. 2019;80:204–9.

    Article  CAS  Google Scholar 

  6. Mangnus PJ, Bos A, Moulijn JA. Temperature-programmed reduction of oxidic and sulfidic alumina-supported NiO, WO3, and NiO–WO3 catalysts. J Catal. 1994;146:437–48.

    Article  CAS  Google Scholar 

  7. Navarro-Flores E, Chong Z, Omanovic S. Characterization of Ni, NiMo, NiW and NeFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A Chem. 2005;226:179–97.

    Article  CAS  Google Scholar 

  8. Mentus S, Majstorovic DM, Tomic BS, Dimitrijevic RZ. Reduction of NiO–WO3 oxide mixtures synthesized by gel-combustion technique: a route to Ni–W alloys. Mater Sci Forum. 2005;494:345–50.

    Article  CAS  Google Scholar 

  9. Tingaud D, Sadat T, Dirras G. Nickel–tungsten composite-like microstructures processed by spark plasma sintering for structural applications. In: Cavaliere P, editor. Spark plasma sintering of materials: advances in processing and applications. Basel: Springer; 2019. p. 605–34.

    Chapter  Google Scholar 

  10. Ahmed HM, Seetharaman S. Reduction–carburization of NiO–WO3 under isothermal conditions using H2–CH4 gas mixture. Metall Mater Trans B. 2010;41:173–81.

    Article  CAS  Google Scholar 

  11. Quintana-Melgoza JM, Gomez-Cortes A, Avalos-Borja M. Reduction of NO by CO over NiWO4, NiO, and WO3 catalysts. React Kinet Catal Lett. 2002;76:131–40.

    Article  CAS  Google Scholar 

  12. Zhang H, Chen G, Bai L, Chang N, Wang Y. Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts. Fuel. 2019;244:359–65.

    Article  CAS  Google Scholar 

  13. Ivekovića A, Montero-Sistiaga ML, Vanmeensel K, Kruth JP, Vleugels J. Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM. Int J Refract Met Hard Mater. 2019;82:23–30.

    Article  CAS  Google Scholar 

  14. Zakaryan M, Aydinyan S, Kharatyan S. Combustion synthesis and consolidation of Ni–W nanocomposite material. Ceram Mod Tech. 2019;1:67–74.

    Google Scholar 

  15. Chanadee T, Singsarothai S. Effect of high-energy milling on magnesiothermic self-propagating high-temperature synthesis in a mixture of SiO2, C, and Mg reactant powders. Combust Explos Shock Waves. 2019;55(1):97–106.

    Article  Google Scholar 

  16. Hobosyan MA, Kirakosyan KG, Kharatyan SL, Martirosyan KS. PTFE–Al2O3 reactive interaction at high heating rates. J Therm Anal Calorim. 2015;119:245–51.

    Article  CAS  Google Scholar 

  17. Nepapushev AA, Kirakosyan KG, Moskovskikh DO, Kharatyan SL, Rogachev AS, Mukasyan AS. Influence of high-energy ball milling on reaction kinetics in the Ni–Al system: an electrothermographic study. Int J SHS. 2015;24(1):21–8.

    CAS  Google Scholar 

  18. Aydinyan SV, Nazaretyan KT, Zargaryan AG, Tumanyan ME, Kharatyan SL. Reduction mechanism of WO3 + CuO mixture by combined Mg/C reducer. Non isothermal conditions—high heating rates. J Therm Anal Calorim. 2018;133(7):261–9.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  20. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  21. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  22. Kongkaew N, Pruksakit W, Patumsawad S. Thermogravimetric kinetic analysis of the pyrolysis of rice straw. Energy Proc. 2015;79:663–70.

    Article  CAS  Google Scholar 

  23. Ahmed HM, El-Geassy AHA, Viswanathan NN, Seetharaman S. Kinetics and mathematical modeling of hydrogen reduction of NiO–WO3 precursors in fluidized bed reactor. ISIJ Int. 2011;51(9):1383–91.

    Article  CAS  Google Scholar 

  24. Valendar HM, Rezaie H, Samim H, Barati M, Razavizadeh H. Reduction and carburization behavior of NiO–WO3 mixtures by carbon monoxide. Thermocim Acta. 2014;590:210–8.

    Article  CAS  Google Scholar 

  25. Mohammadzadeh H, Rezaie HR, Barati M, Yu D, Samim HR. Kinetics of nonisothermal reduction and carburization of WO3–NiO nano-composite powders by CO–CO2. Int J Chem Kinet. 2019;51:463–75.

    Article  CAS  Google Scholar 

  26. Zakaryan MK, Niazyan OM, Aydinyan SV, Kharatyan SL. DTA/TG study of NiO reduction by Mg + C combined reducer. Chem J Arm. 2018;71(4):473–85.

    CAS  Google Scholar 

  27. Syed-Hassan SSA, Li CZ. Effects of crystallite size on the kinetics and mechanism of NiO reduction with H2. Int J Chem Kinet. 2011;43(12):667–76.

    Article  CAS  Google Scholar 

  28. Jankovic B, Adnadevic B, Mentus S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim Acta. 2007;456:48–55.

    Article  CAS  Google Scholar 

  29. Richardson JT, Scates R, Twigg MV. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl Catal A Gen. 2003;246(1):137–50.

    Article  CAS  Google Scholar 

  30. Krasuk JH, Smith JM. Kinetics of reduction of nickel oxide with CO. AIChE J. 1972;18(3):506–12.

    Article  CAS  Google Scholar 

  31. Sharma SK, Vastola FJ, Walker PL. Reduction of nickel oxide by carbon: III. Kinetic studies of the interaction between nickel oxide and natural graphite. Carbon. 1997;35(4):535–41.

    Article  CAS  Google Scholar 

  32. Bakhshandeh S, Setoudeh N, Zamani M, Mohassel A. Carbothermic reduction of mechanically activated NiO–carbon mixture: non-isothermal kinetics. J Min Metall. 2018;54(3):313–22.

    Article  CAS  Google Scholar 

  33. Zheng J, Jin Y, Chi Y, Wen J, Jiang X, Ni M. Pyrolysis characteristics of organic components of municipal solid waste at high heating rates. Waste Manag. 2009;29:1089–94.

    Article  CAS  PubMed  Google Scholar 

  34. Yin Q, Lai C, Chena S, Peng J, Li H, Zhou W, Hu P, Wang J. Investigations of the nickel promotional effect on the reduction and sintering of tungsten compounds. Int J Refract Met Hard Mater. 2019;78:296–302.

    Article  CAS  Google Scholar 

  35. Zakaryan MK, Niazyan OM, Aydinyan SV, Kharatyan SL. Reaction pathway in the WO3–NiO–Mg–C system. DTA/TG study. Chem J Arm. 2019;72(3):223–32.

    CAS  Google Scholar 

  36. Qiao D, Wang Y, Li F, Wang D, Yan B. Kinetic study on preparation of substoichiometric tungsten oxide WO2.72 via hydrogen reduction process. J Therm Anal Calorim. 2019;137:389–97.

    Article  CAS  Google Scholar 

  37. Gaglieri C, Alarcon RT, de Moura A, Cairez FJ. Nickel selenate: a deep and efficient characterization. J Therm Anal Calorim. 2019;139:1707–15.

    Article  CAS  Google Scholar 

  38. Aydinyan SV, Kirakosyan HV, Kharatyan SL. Cu–Mo composite powders obtained by combustion–coreduction process. Int J Refract Met Hard Mater. 2016;54:455–63.

    Article  CAS  Google Scholar 

  39. Zakaryan M, Kirakosyan H, Aydinyan S, Kharatyan S. Combustion synthesis of W–Cu composite powders from oxide precursors with various proportions of metals. Int J Refract Met Hard Mater. 2017;64:176–83.

    Article  CAS  Google Scholar 

  40. Baghdasaryan AM, Niazyan OM, Khachatryan HL, Kharatyan SL. DTA/TGA study of molybdenum oxide reduction by Mg/Zn & Mg/C combined reducers at non-isothermal conditions. Int J Refract Met Hard Mater. 2015;51:315–23.

    Article  CAS  Google Scholar 

  41. Baghdasaryan AM, Niazyan OM, Khachatryan HL, Kharatyan SL. DTA/TG study of tungsten oxide and ammonium tungstate reduction by (Mg + C) combined reducers at non-isothermal conditions. Int J Refract Met Hard Mater. 2014;43:216–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed with financial support from the Committee of Science MES of Republic of Armenia (Research Grant 18T-1D051) and the Estonian Research Council Grant PSG220 (S. Aydinyan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Zakaryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaryan, M.K., Nazaretyan, K.T., Aydinyan, S.V. et al. NiO reduction by Mg + C combined reducer at high heating rates. J Therm Anal Calorim 146, 1811–1817 (2021). https://doi.org/10.1007/s10973-020-10148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10148-5

Keywords

Navigation