Skip to main content
Log in

Steady flow and heat transfer of the power-law fluid between two stretchable rotating disks with non-uniform heat source/sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to analyze the heat transfer phenomenon of power-law fluid with the occurrence of non-uniform heat source/sink within two stretchable disks which are parted with the constant distance and are co-axially rotating. The thermal conductivity is obeying the similar properties of power-law as that of viscosity. Von Karman’s generalized similarity transformation has been used firstly to reduce the physically modeled partial differential equations to nonlinear coupled ordinary differential equations and then tackled numerically with shooting method by finding missing initial conditions with the help of Newton–Raphson method and then system of equations are handled by means of RK-method. The influence of physical parameters for instance rotation as well as stretching, power-law index, Prandtl number, heat sink/source parameters upon non-dimensional velocity and temperature profiles are studied profoundly, later on, comprehensive analysis is expressed in discussion and results segment. The results which are computed numerically illustrate that the emerging parameters have substantial influences on velocity and temperature fields. In addition, rotation enhances the velocity components but temperature is predicting two diverse behaviors for shear-thinning and shear-thickening fluids, whenever upper and lower disk stretching it leads to an upsurge in radial and axial velocities but causes a decline in tangential velocity and temperature. Moreover, velocity and temperature distributions are in increasing trend except for the tangential component of the velocity which is decreasing by boosting the index of power-law. Furthermore, temperature decreases along with the similarity variable with the increasing Prandtl number but enhances with the enhancement in heat source/sink parameters. Finally, the skin friction in radial direction and local Nusselt number are escalating along the stretching parameters and Prandtl number but skin friction in tangential direction plummeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(u\) :

Radial velocity \(\left( {\text{m s}}^{-1} \right)\)

\(v\) :

Tangential velocity \(\left( {\text{m s}}^{-1} \right)\)

\(w\) :

Axial velocity \(\left( {\text{m s}}^{-1} \right)\)

\(r\) :

Cylindrical coordinate (m)

\(\varphi\) :

Cylindrical coordinate (m)

\(z\) :

Cylindrical coordinates (m)

\({\text{Nu}}_{\text{r}}\) :

Local Nusselt number

\(c_{\rm p}\) :

Specific heat \(\left( {\text{J}}\, {\text{kg}}^{{-1}} \,{\text{K}}^{-1} \right)\)

\(k_{0}\) :

Positive constant

\(k\) :

Thermal conductivity \(\left( {\text{W }}\,{\text{m}}^{-1} \,{\text{K}}^{-1} \right)\)

\(s_{1}\) :

Lower disk stretching rate \(\left( {\text{rad }}\,{\text{s}}^{-1} \right)\)

\(s_{2}\) :

Upper disk stretching rate \(\left( {\text{rad }}\,{\text{s}}^{-1} \right)\)

\(T\) :

Temperature of the fluid (K)

\(T_{1}\) :

Temperature at lower wall (K)

\(T_{2}\) :

Temperature at upper wall (K)

\(S_{1}\) :

Lower disk stretching parameter

\(S_{2}\) :

Upper disk stretching parameter

\(F\) :

Dimensionless radial velocity

\(G\) :

Dimensionless tangential velocity

\(H\) :

Dimensionless axial velocity

\({ \Pr }\) :

Prandtl number

\(C_{\text{Fr}}\) :

Skin friction in radial directions

\(C_{{\rm F}\theta }\) :

Skin friction in tangential direction

\(q_{\rm w}\) :

Constant heat flux \(\left( {{\text{W}}\, {\text{m}}^{-2}} \right)\)

\(q^{\prime\prime\prime}\) :

Non-uniform heat source/sink \(\left( {\text{k }}\,{\text{s}}^{-1} \right)\)

\(B^{*}\) :

Temperature-dependent heat source/sink parameter

\(A^{*}\) :

Temperature-dependent heat source/sink parameter

\({\text{Re}}_{\text{r}}\) :

Local Reynolds number

\(\theta\) :

Dimensionless temperature

\(\rho\) :

Effective density \(\left( {{\text{kg }}\,{\text{m}}^{-3}} \right)\)

\(\nu\) :

Kinematic viscosity \(\left( {\text{m}}^{2} \,{\text{s}}^{-1} \right)\)

\(\varOmega\) :

Rotational parameter

\(\mu\) :

Effective dynamic viscosity \(\left( {\text{kg}}\,{\text{m}}^{-1} {\text{s}}^{-1} \right)\)

\(\mu_{0}\) :

Consistency coefficient

\(\varOmega_{1}\) :

Lower disk angular velocity \(\left( {\text{rad}}\, {\text{s}}^{-1} \right)\)

\(\varOmega_{2}\) :

Upper disk angular velocity \(\left( {\text{rad}}\, {\text{s}}^{-1} \right)\)

\(\xi\) :

Dimensionless similarity variable

\(\tau_{\rm rz}\) :

Shear stress in radial direction \(\left( {\text{Pa}} \right)\)

\(\tau_{\uptheta {\rm{z}}}\) :

Shear stress in tangential direction \(\left( {\text{Pa}} \right)\)

\('\) :

Derivative w. r. t \(\xi\)

\(n\) :

Power-law index

\(\varvec{*}\) :

Dimensionless variables

p:

Pressure \(\left( {\text{Pa}} \right)\)

N:

Effective variable

References

  1. Von Kármán T. Über laminare und turbulente reibung. Zeitschrift für Angewandte Mathematik und Mechanik. 1921;1:233–52.

    Article  Google Scholar 

  2. Cochran WG, Goldstein S. The flow due to a rotating disk. Math Proc Camb Philos Soc. 1934;30:365–75.

    Article  Google Scholar 

  3. Rogers MH, Lance GN. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk. J Fluid Mech. 1960;7:617–31.

    Article  Google Scholar 

  4. Benton ER. On the flow due to a rotating disk. J Fluid Mech. 1966;24:781–800.

    Article  Google Scholar 

  5. Milsaps K, Polhausen K. Heat transfer by laminar flow from a rotating plate. J Aeronaut Sci. 1952;19:120–6.

    Article  Google Scholar 

  6. Dorfman LA, Serazetdinov AZ. Laminar flow and heat transfer near rotating axisymmetric surface. Int J Heat Mass Transf. 1965;8:317–27.

    Article  CAS  Google Scholar 

  7. Shevchuk IV. A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation. Int J Therm Sci. 2005;44:374–81.

    Article  Google Scholar 

  8. Turkyilmazoglu M. Exact solutions corresponding to the viscous incompressible and conducting fluid flow due to a porous rotating disk. J Heat Transf. 2009;131:091701–2.

    Article  Google Scholar 

  9. Turkyilmazoglu M, Senel P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int J Therm Sci. 2013;63:146–58.

    Article  Google Scholar 

  10. Matkowsky BJ, Siegmann WL. The flow between counter-rotating disks at high Reynolds number. SIAM J Appl Math. 1976;30:720–7.

    Article  Google Scholar 

  11. Sandilya P, Biswas G, Rao DP, Sharma A. Numerical simulation of the gas flow and mass transfer between two coaxially rotating disks. J Numer Heat Transf. 2001;39:285–305.

    Article  CAS  Google Scholar 

  12. Turkyilmazoglu M. The flow and heat simultaneously induced by two stretchable rotating disks. J Phys Fluids. 2016;28:043601.

    Article  Google Scholar 

  13. Awati VB, Jyoti M, Prasad KV. Series analysis for the flow between two stretchable disks. J Eng Sci Technol. 2017;20:1211–9.

    Google Scholar 

  14. Ahmed J, Khan M, Ahmad L. Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08712-9.

    Article  Google Scholar 

  15. Imtiaz M, Shahid F, Hayat T. Chemical reactive flow of Jeffrey fluid due to a rotating disk with non-Fourier heat flux theory. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08997-w.

    Article  Google Scholar 

  16. Mahanthesh B, Lorenzini G, Oudina FM, et al. Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08985-0.

    Article  Google Scholar 

  17. Hong K, Alizadeh R, Ardalan MV, et al. Numerical study of nonlinear mixed convection inside stagnation–point fow over surface–reactive cylinder embedded in porous media. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09245-x.

    Article  Google Scholar 

  18. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09229-x.

    Article  Google Scholar 

  19. Wakif Abderrahim, Boulahia Zoubair, Sehaqu Rachid. Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 2017. https://doi.org/10.1016/j.rinp.2017.06.003.

    Article  Google Scholar 

  20. Nayak MK, Wakif A, Animasaun IL, Saidi Hassani Alaoui M. Numerical differential quadrature examination of steady mixed convection nanofluid flows over an isothermal thin needle conveying metallic and metallic oxide nanomaterials: a comparative investigation. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04420-x.

    Article  Google Scholar 

  21. Zaib A, Khan U, Wakif A, Zaydan M. Numerical entropic analysis of mixed MHD convective flows from a non-isothermal vertical flat plate for radiative tangent hyperbolic blood biofluids conveying magnetite ferroparticles: dual similarity solutions. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04393-x.

    Article  Google Scholar 

  22. Qasim M, Afridi MI, Wakif A, Saleem S. Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method. Arab J Sci Eng. 2019. https://doi.org/10.1007/s13369-019-03804-y.

    Article  Google Scholar 

  23. Wakif A, Boulahia Z, Mishra SR, Mehdi Rashidi M, Sehaqui R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur Phys J Plus. 2018. https://doi.org/10.1140/epjp/i2018-12037-7.

    Article  Google Scholar 

  24. Rashad AM, El-Hakiem MA. Effect of radiation on non-Darcy free convection from a vertical cylinder embedded in a fluid-saturated porous medium with a temperature-dependent viscosity. J Porous Media. 2007;10:209–18.

    Article  Google Scholar 

  25. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08156-1.

    Article  Google Scholar 

  26. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  27. Sheikholeslami M, Gerdroodbary MB, Shafee A, et al. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

    Article  Google Scholar 

  28. Sheikholeslami M, Sheremet MA, Shafee A, et al. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  29. Sheikholeslami M, Sajjadi H, Amiri Delouei A, et al. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7901-8.

    Article  Google Scholar 

  30. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  31. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano–enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08979-y.

    Article  Google Scholar 

  32. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7093-2.

    Article  Google Scholar 

  33. Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09097-5.

    Article  Google Scholar 

  34. Waqas H, Khan SU, Bhatti MM, Imran M. Signifcance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofuid with thermal radiation and second–order slip. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09462-9.

    Article  Google Scholar 

  35. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  36. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08878-2.

    Article  Google Scholar 

  37. Zandbergen PJ, Dijkstra D. Von Karman swirling flows. Annu Rev Fluid Mech. 1987;19:465–91.

    Article  Google Scholar 

  38. Attia HA. Rotating disk flow and heat transfer through a porous medium of a non-Newtonian fluid with suction and injection. J Commun Nonlinear Sci Numer Sim. 2008;13:1571–80.

    Article  Google Scholar 

  39. Sahoo B. Effects of partial slip, viscous dissipation and Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid. J Commun Nonlinear Sci Numer Sim. 2009;14:2982–98.

    Article  Google Scholar 

  40. Osalusi E, Side J, Harris R, Johnston B. On the effectiveness of viscous dissipation and Joule heating on steady MHD flow and heat transfer of a Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents. J Int Commun Heat Mass Transf. 2007;34:1030–40.

    Article  CAS  Google Scholar 

  41. Rashaida AA. Flow of a non-Newtonian Bingham plastic fluid over a rotating disk. PhD Thesis. University of Saskatchewan. 2005. http://hdl.handle.net/10388/etd-08172005-120844. Accessed Aug 2005.

  42. Mitschka P. Nicht-Newtonsche Flüssigkeiten II. Drehstromungen Ostwald-de Waelescher Nicht-Newtonscher Flüssigkeiten. J Collect Czechoslov Chem Commun. 1964;29:2892–905.

    Article  CAS  Google Scholar 

  43. Mitschka P, Ulbricht J. Nicht-Newtonsche Flüssigkeiten IV. Strömung Nicht-Newtonscher Flüssigkeiten Ostwald-de-Waeleschen Ttyps in der Umgebung Rotierender Drehkegel und Scheiben. N Collect Czech Chem Commun. 1965;30:2511–26.

    Article  CAS  Google Scholar 

  44. Smith RN, Greif R. Laminar convection to rotating cones and disks in non-Newtonian power-law fluids. Int J Heat Mass Transf. 1975;18:1249–52.

    Article  Google Scholar 

  45. Andersson HI, De Korte E, Meland R. Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn Res. 2001;28:75–88.

    Article  Google Scholar 

  46. Nitin S, Chhabra PR. Sedimentation of a circular disk in power law fluids. J Colloid Interface Sci. 2006;295:520–7.

    Article  CAS  Google Scholar 

  47. Andersson HI, De Korte E. MHD flow of a power-law fluid over a rotating disk. Eur J Mech B/Fluids. 2002;2:317–24.

    Article  Google Scholar 

  48. Denier JP, Hewitt RE. Asymptotic matching constraints for a boundary-layer flow of a power-law fluid. J Fluid Mech. 2004;518:261–79.

    Article  Google Scholar 

  49. EL-Kabeir SMM, EL-Hakiem MA, Rashad AM, MA, Rashad AM. Group method analysis of combined heat and mass transfer by MHD non-Darcy non-Newtonian natural convection adjacent to horizontal cylinder in a saturated porous medium. Appl Math Model. 2008;32:2378–95.

  50. EL-Kabeir SMM, Chamkha A, Rashad AM. Heat and mass transfer by MHD stagnation-point flow of a power-law fluid towards a stretching surface with radiation, chemical reaction and soret and dufour effects. Int J Chem Reac Eng. 2010;8:Article A132.

  51. Ming CY, Zheng L, Zhang X. Steady flow and heat transfer of the power-law fluid over a rotating disk. Int Commun Heat Mass Transf. 2011;38:280–4.

    Article  Google Scholar 

  52. Ming CY, Zheng L, Zhang X. MHD flow of shear-thinning fluid over a rotating disk with heattransfer. J Appl Mech Mater. 2012;130–134:3599–602.

    Google Scholar 

  53. Ming CY, Zheng L, Zhang X, Liu F, Anh V. Flow and heat transfer of power-law fluid over a rotating disk with generalized diffusion. Int Commun Heat Mass Transf. 2016;79:81–8.

    Article  CAS  Google Scholar 

  54. Griffiths PT, Stephen SO, Bassom AP, Garrett SJ. Stability of the boundary layer on a rotating disk or power-law fluids. J Non-Newton Fluid Mech. 2014;207:1–6.

    Article  CAS  Google Scholar 

  55. Griffiths PT. Flow of a generalised Newtonian fluid due to a rotating disk. J Non-Newton Fluid Mech. 2015;221:9–17.

    Article  CAS  Google Scholar 

  56. Xun Shuo, Zhao Jinhu, Zheng Liancun, Chen Xuehui, Zhang Xinxin. Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. Int J Heat Mass Transf. 2016;103:1214–24.

    Article  CAS  Google Scholar 

  57. Mahanthesh B, Animasaun IL, Rahimi-Gorji M, Alarifi IM. Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink. Phys A. 2019;535:122471.

    Article  Google Scholar 

  58. Pal Dulal, Mandal Gopinath. Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci. 2016. https://doi.org/10.1016/j.ijmecsci.2016.12.023.

    Article  Google Scholar 

  59. Gireesha BJ, Mahanthesh B, Gorla RSR, Krupalakshmi KL. Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension. Ain Shams Eng J. 2016. https://doi.org/10.1016/j.asej.2016.04.020.

    Article  Google Scholar 

  60. Na TY. Computational methods in engineering boundary value problems. Michigan: Mathematics in Science and Engineering; 1979:70–79.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Usman or Ping Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, Lin, P. & Ghaffari, A. Steady flow and heat transfer of the power-law fluid between two stretchable rotating disks with non-uniform heat source/sink. J Therm Anal Calorim 146, 1735–1749 (2021). https://doi.org/10.1007/s10973-020-10142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10142-x

Keywords

Navigation