Skip to main content
Log in

EMD analysis on the impact of temperature, volume fraction and molecular weight on the thermal conductivity of water-based nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The development of high-performance thermal systems for heat transfer enhancement is crucial since the reliability and performance of chips and processors are heavily dependent on the operating temperature. The space constraints also need to be simultaneously met. Miniaturization, optimum power consumption and enhancement in the efficiency of electronic systems can be achieved by the judicious selection of nanofluids. But the enhancement in thermal conductivity of nanofluids is dependent on a number of parameters such as volume fraction of nanoparticles, nanoparticle used, size and shape of the nanoparticle, base fluid used and temperature. For studying the impact of volume fraction, system temperature and weight of nanoparticle on thermal conductivity enhancement of water-based aluminium/aluminium oxide nanofluids, equilibrium molecular dynamics is applied. The numerical estimation of thermal conductivity is performed in the temperature range of 290–350 K for volume fraction ranging between 1 and 4%. From the analysis, it is observed that although there is a definite thermal conductivity enhancement for nanofluids when compared to water, an increase in volume fraction and temperature may not always result in a proportionate enhancement. At low temperatures, a nanofluid with a heavier nanoparticle and low volume fraction is effective, but the enhancement at higher temperatures and higher volume fractions is found to be more for a nanofluid having a lighter nanoparticle. Hence, in addition to temperature and volume fraction, weight of the nanoparticle is also a critical factor in the selection of nanofluids. For a given nanoparticle, there exist a particular temperature and volume fraction at which the nanofluid gives maximum heat transfer effectiveness. The base fluid used is also important as nanofluids exhibit a delayed convection onset when compared to base fluid, and the delay is more as volume fraction increases. Nanofluid is more effective in heat transfer only when its layer thickness is greater than the thickness required for convection to onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

h :

Convective heat transfer coefficient (W m−2 K−1)

\( \phi \) :

Intermolecular LJ potential (eV)

\( \varepsilon \) :

Energy parameter (eV)

\( \sigma \) :

Length parameter (Å)

r :

Distance between the two atoms (Å)

r 0 :

Equilibrium bond distance (Å)

q :

Atomic charge (e)

E p :

Harmonic bond potential

K p :

Bond coefficient for two atoms energy length−2

Ea:

Harmonic bond angle potential

K a :

Harmonic bond angle coefficient energy radian−2

θ 0 :

Equilibrium value of bond angle degrees

V s :

System volume

k B :

Boltzmann constant

T :

System temperature

J :

Microscopic heat flux vector

t :

Time

k :

Thermal conductivity (W m−1 K−1)

References

  1. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O. A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep. 2020;843:1–81.

    Article  CAS  Google Scholar 

  2. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  3. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ–Al2O3, SiO2, and TiO2 ultra-fine particles). NETSU BUSSEI. 1993;1993(7):227–33.

    Article  Google Scholar 

  4. Peterson GP, Li CH. Heat and mass transfer in fluids with nanoparticle suspensions. Rev Article Adv Heat Transf. 2006;39:257–76.

    Article  CAS  Google Scholar 

  5. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.

    Article  CAS  Google Scholar 

  6. Wen DD, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf. 2004;18:481–5.

    Article  CAS  Google Scholar 

  7. Xie H, Chen L. Adjustable thermal conductivity in carbon nanotube nanofluids. Phys Lett A. 2009;373:1861–4.

    Article  CAS  Google Scholar 

  8. Das SK, Putra N, Roetzel W. Pool boiling of nanofluids on horizontal narrow tubes. Int. J. Multiph Flow. 2003;29:1237–47.

    Article  CAS  Google Scholar 

  9. Yu W, Xie H, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. 2010;21:055705.

    Article  PubMed  CAS  Google Scholar 

  10. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  11. Li YH, Qu W, Feng JC. Temperature dependence of thermal conductivity of nanofluids. Chin Phys Lett. 2008;25:3319–22.

    Article  CAS  Google Scholar 

  12. Li CH, Williams W, Buongiorno J, Hu LW, Peterson GP. Transient and steady state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids. J Heat Transf. 2008;130(4):042407.

    Article  CAS  Google Scholar 

  13. Zhang S, Ge Z, Fan X, Huang H, Long X. Prediction method of thermal conductivity of nanofluids based on radial basis function. J Therm Anal Calorim. 2020;141:859–80. https://doi.org/10.1007/s10973-019-09067-x.

    Article  CAS  Google Scholar 

  14. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  15. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Transf. 2000;21:58–64.

    Article  CAS  Google Scholar 

  16. Mostafizur RM, Bhuiyan MHU, Saidur R, Aziz ARA. Thermal conductivity variation for methanol based nanofluids. Int J Heat Mass Transf. 2014;76:350–6.

    Article  CAS  Google Scholar 

  17. Heris SZ, Etemad SG, Nasresfahany M. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33:529–35.

    Article  CAS  Google Scholar 

  18. Farajollahi B, Etemad SG, Hojjat M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf. 2010;53:12–7.

    Article  CAS  Google Scholar 

  19. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci. 2013;51:103–11.

    Article  CAS  Google Scholar 

  20. Sahooli M, Sabbaghi S. Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture. Mater Lett. 2013;93:254–7.

    Article  CAS  Google Scholar 

  21. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60.

    Article  Google Scholar 

  22. Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf. 2006;19(3):181–91.

    Article  CAS  Google Scholar 

  23. Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40:3164–71.

    Article  CAS  Google Scholar 

  24. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):143119.

    Article  CAS  Google Scholar 

  25. Simpson S, Schelfhout A, Golden C, Vafaei S. Nanofluid thermal conductivity and effective parameters. Appl Sci. 2019;9:87. https://doi.org/10.3390/app9010087.

    Article  CAS  Google Scholar 

  26. Seyhan M, Altan CL, Gurten B, Bucak S. The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids. AIP Adv. 2017;7:2218–26.

    Article  CAS  Google Scholar 

  27. Agarwal R, Verma K, Agrawal NK, Singh R. Sensitivity of thermal conductivity for Al2O3 nanofluids. Exp Therm Fluid Sci. 2017;80:19–26.

    Article  CAS  Google Scholar 

  28. Kalteh M. Investigating the effect of various nanoparticle and base liquid types on the nanofluids heat and fluid flow in a microchannel. Appl Math Model. 2013;37:8600–9.

    Article  Google Scholar 

  29. Lee S, Choi S, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;5:280–9.

    Article  Google Scholar 

  30. Akamatsu M, Izawa H, Kawamura T, Iwamoto M, Ozoe H. Natural convective heat transfer characteristics of Rayleigh-Benard convection of Al2O3–water nanofluids. J Therm Sci Technol. 2017;12(2):32.

    Article  CAS  Google Scholar 

  31. Elhajjar B, Bachir G, Mojtabi A, Fakih C, Charrier-Mojtabi MC. Modeling of Rayleigh-Bénard natural convection heat transfer in nanofluids. Comptes Rendus Mécanique. 2010;338:350–4.

    Article  CAS  Google Scholar 

  32. Ramesh Krishnan S, Narayanan Namboothiri VN, Mathew A. Optimum fluid layer thickness for heat transfer effectiveness using water-based nanofluids—a numerical estimation. Heat Transf Asian Res. 2019;48(8):3945–67.

    Article  Google Scholar 

  33. Izadkhah M-S, Heris SZ. Influence of Al2O3 nanoparticles on the stability and viscosity of nanofluids. J Therm Anal Calorim. 2019;138:623–31.

    Article  CAS  Google Scholar 

  34. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Computat Phys. 1995;117:1–19.

    Article  CAS  Google Scholar 

  35. Nejatolahi M, Golneshan AA, Kamali R, et al. Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09595-x.

    Article  Google Scholar 

  36. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2019;790:1–48. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  CAS  Google Scholar 

  37. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  CAS  Google Scholar 

  38. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  39. Zerradi H, Loulijat H. Numerical simulation of thermal conductivity of aqueous nanofluids containing graphene nanosheets using molecular dynamics simulation. MOJ Appl Bion Biomech. 2018;2(6):313–22.

    Google Scholar 

  40. Sankar N, Mathew N, Sobhan CB. Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. Int Commun Heat Mass Transf. 2008;35:867–72.

    Article  CAS  Google Scholar 

  41. Mao Y, Zhang Y. Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem Phys Lett. 2012;542:37.

    Article  CAS  Google Scholar 

  42. Song Hi Lee. Temperature dependence of the thermal conductivity of water: a molecular dynamics simulation study using the SPC/E model. Mol Phys. 2014;112(16):2155–9.

    Article  CAS  Google Scholar 

  43. Babaei H, Keblinski P, Khodadadi JM. A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity of nanofluids by utilizing molecular dynamics simulations. J Appl Phys. 2013;113:084302.

    Article  CAS  Google Scholar 

  44. Chon CH, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  CAS  Google Scholar 

  45. Essajai R, Tabtab I, Mzerd A, Mounkachi O, Hassanain N, Qjani M. Molecular dynamics study of thermal properties of nanofluids composed of one-dimensional (1-D) network of interconnected gold nanoparticles. Results Phys. 2019;15:102576.

    Article  Google Scholar 

  46. Carrillo-Berdugo I, Zorrilla D, Sánchez-Márquez J, Aguilar T, Gallardo JJ, Gómez-Villarejo R, Alcántara R, Fernández-Lorenzo C, Navas J. Interface-inspired formulation and molecular-level perspectives on heat conduction and energy storage of nanofluids. www.nature.com/scientificreports. May 2019.

  47. Wang X, Jing D. Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation. Int J Heat Mass Transf. 2019;128:199–207.

    Article  CAS  Google Scholar 

  48. Topal I, Servantie J. Molecular dynamics study of the thermal conductivity in nanofluids. Chem Phys. 2019;516:147–51.

    Article  CAS  Google Scholar 

  49. Hadipeykani M, Aghadavoudi F, Toghraie D. A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123995.

    Article  Google Scholar 

  50. Jolfaei NA, Jolfaei NA, Hekmatifar M, Piranfar A, Toghraie D, Sabetvand R, Rostami S. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput Methods Programs Biomed. 2020. https://doi.org/10.1016/j.cmpb.2019.105169.

    Article  PubMed  Google Scholar 

  51. Rostami S, Ahmadi-Danesh-Ashtiani H, Toghraie D, Fazaeli R. A statistical method for simulation of boiling flow inside a Platinum microchannel. Physica A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123879.

    Article  Google Scholar 

  52. Ashkezari AZ, Jolfaei NA, Jolfaei NA, Hekmatifar M, Toghraie D, Sabetvand R, Rostami S. Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches. Comput Methods Programs Biomed. 2020. https://doi.org/10.1016/j.cmpb.2019.105256.

    Article  PubMed  Google Scholar 

  53. Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. Cambridge: Academic Press; 2001.

    Google Scholar 

  54. Leach AR. Molecular modelling: principles and applications. 2nd ed. Essex: Pearson Education Limited; 2001.

    Google Scholar 

  55. Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S, Zuckerman DM. Best practices for foundations in molecular simulations. Living J Comp Mol Sci. 2019;1(1):5957.

    Google Scholar 

  56. Lennard-Jones potential. Croatian-English Chemistry Dictionary & Glossary. 2018.

  57. DA McQuarrie. Statistical mechanics. University Science Books California. 2000; 520.

  58. Keblinski P. Mechanisms of heat flow in suspensions of nano–sized particles (nanofluids). Int J Heat Mass Transf. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  59. Cui W, Shen Z, Yang J, et al. Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation. RSC Adv. 2014;4:55580–9.

    Article  CAS  Google Scholar 

  60. Rapaport DC. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  61. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng. 2010;18(1):015012.

    Article  Google Scholar 

  62. Dushanov E, Kholmurodov K, Yasuoka K. Molecular dynamics studies of the interaction between water and oxide surfaces. Phys Part Nucl Lett. 2012;9(6):541–51.

    Article  CAS  Google Scholar 

  63. Clement Yu, Feng K. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6:229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh Krishnan, S., Narayanan Namboothiri, V.N. EMD analysis on the impact of temperature, volume fraction and molecular weight on the thermal conductivity of water-based nanofluids. J Therm Anal Calorim 146, 1525–1537 (2021). https://doi.org/10.1007/s10973-020-10134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10134-x

Keywords

Navigation